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Objectives

One of the key issues in designing a multilayer network is determining the 
number of neurons to use. In effect, that is the objective of this chapter.

In Chapter 11 we showed that if the number of neurons is too large, the net-
work will overfit the training data. This means that the error on the train-
ing data will be very small, but the network will fail to perform as well 
when presented with new data. A network that generalizes well will per-
form as well on new data as it does on the training data.

The complexity of a neural network is determined by the number of free pa-
rameters that it has (weights and biases), which in turn is determined by 
the number of neurons. If a network is too complex for a given data set, 
then it is likely to overfit and to have poor generalization.

In this chapter we will see that we can adjust the complexity of a network 
to fit the complexity of the data. In addition, this can be done without 
changing the number of neurons. We can adjust the effective number of 
free parameters without changing the actual number of free parameters.
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Theory and Examples

Mark Twain once said “We should be careful to get out of an experience 
only the wisdom that is in it-and stop there; lest we be like the cat that sits 
down on a hot stove-lid. She will never sit down on a hot stove-lid again-
and that is well; but also she will never sit down on a cold one any more.” 
(From Following the Equator, 1897.)

That is the objective of this chapter. We want to train neural networks to 
get out of the data only the wisdom that is in it. This concept is called gen-
eralization. A network trained to generalize will perform as well in new sit-
uations as it does on the data on which it was trained.

The key strategy we will use for obtaining good generalization is to find the 
simplest model that explains the data. This is a variation of a principle 
called Ockham’s razor, which is named after the English logician William 
of Ockham, who worked in the 14th Century. The idea is that the more 
complexity you have in your model, the greater the possibility for errors.

In terms of neural networks, the simplest model is the one that contains 
the smallest number of free parameters (weights and biases), or, equiva-
lently, the smallest number of neurons. To find a network that generalizes 
well, we need to find the simplest network that fits the data.

There are at least five different approaches that people have used to pro-
duce simple networks: growing, pruning, global searches, regularization, 
and early stopping. Growing methods start with no neurons in the network 
and then add neurons until the performance is adequate. Pruning methods 
start with large networks, which likely overfit, and then remove neurons 
(or weights) one at a time until the performance degrades significantly. 
Global searches, such as genetic algorithms, search the space of all possible 
network architectures to locate the simplest model that explains the data.

The final two approaches, regularization and early stopping, keep the net-
work small by constraining the magnitude of the network weights, rather 
than by constraining the number of network weights. In this chapter we 
will concentrate on these two approaches. We will begin by defining the 
problem of generalization and by showing examples of both good and poor 
generalization. We will then describe the regularization and early stopping 
methods for training neural networks. Finally, we will demonstrate how 
these two methods are, in affect, performing the same operation.

Problem Statement
Let’s begin our discussion of generalization by defining the problem. We 
start with a training set of example network inputs and corresponding tar-
get outputs:

Generalization

Ockham’s Razor
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. (13.1)

For our development of the concept of generalization, we will assume that 
the target outputs are generated by

, (13.2)

where  is some unknown function, and  is a random, independent 
and zero mean noise source. Our training objective will be to produce a neu-
ral network that approximates , while ignoring the noise. 

The standard performance index for neural network training is the sum 
squared error on the training set:

, (13.3)

where  is the network output for input . We are using the variable  
to represent the sum squared error on the training data, because later we 
will modify the performance index to include an additional term.

The problem of overfitting is illustrated in Figure 13.1. The blue curve rep-
resents the function . The large open circles represent the noisy target 
points. The black curve represents the trained network response, and the 
smaller circles filled with crosses represent the network response at the 
training points. In this figure we can see that the network response exactly 
matches the training points. However, it does a very poor job of matching 
the underlying function. It overfits.

There are actually two kinds of errors that occur in Figure 13.1. The first 
type of error, which is caused by overfitting, occurs for input values be-
tween -3 and 0. This is the region where all of the training data points oc-
ccur. The network response in this region overfits the training data and 
will fail to perform well for input values that are not in the training set. The 
network does a poor job of interpolation; it fails to accurately approximate 
the function near the training points.

The second type of error occurs for inputs in the region between 0 and 3. 
The network fails to perform well in this region, not because it is overfit-
ting, but because there is no training data there. The network is extrapo-
lating beyond the range of the input data.

In this chapter we will discuss methods for preventing overfitting. There is 
no way to prevent errors of extrapolation. It is very important that the data 
that is used to train the network cover the regions of the input space for 
which the network will be used. The network has no way of knowing what 
the true function looks like in regions for which there is no data.
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Figure 13.1  Example of Overfitting and Poor Extrapolation

In Figure 13.2 we have an example of a network that has been trained to 
generalize well. The network has the same number of weights as the net-
work of Figure 13.1, and it was trained using the same data set, but it has 
been trained in such a way that it does not fully use all of the weights that 
are available. It only uses as many weights as necessary to fit the data. The 
network response does not fit the function perfectly, but it does the best job 
it can, based on limited and noisy data.

Figure 13.2  Example of Good Interpolation and Poor Extrapolation

In both Figure 13.1 and Figure 13.2 we can see that the network fails to ex-
trapolate accurately. This is understandable, since the network has been 
provided with no information about the characteristics of the function out-
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side of the range . The network response outside this range will 
be unpredictable. This is why it is important to have training data for all 
regions of the input space for which the network will be used. It is usually 
not difficult to determine the required input range when the network has 
a single input, as in this example. However, when the network has many 
inputs, it becomes more difficult to determine when the network is interpo-
lating and when it is extrapolating.

This problem is illustrated in a simple way in Figure 13.3. On the left side 
of this figure we see the function that is to be approximated. The range for 
the input variables is  and . The neural network was 
trained over these ranges of the two variables, but only for . There-
fore, both  and  cover their individual ranges, but only half of the total 
input space is covered. When , the network is extrapolating, and we 
can see on the right side of Figure 13.3 that the network performs poorly in 
this region. (See Problem P13.4 for another example of extrapolation.) If 
there are many input variables, it will be quite difficult to determine when 
the network is interpolating and when it is extrapolating. We will discuss 
some practical ways of dealing with this problem in Chapter 22.

Figure 13.3  Function (a) and Neural Network Approximation (b)

Methods for Improving Generalization
The remainder of this chapter will discuss methods for improving the gen-
eralization capability of neural networks. As we discussed earlier, there are 
a number of approaches to this problem - all of which try to find the sim-
plest network that will fit the data. These approaches fit into two general 
categories: restricting the number of weights (or, equivalently, the number 
of neurons) in the network, or restricting the magnitude of the weights. We 
will concentrate on two methods that we have found to be particularly use-
ful: early stopping and regularization. Both of these approaches attempt to 
restrict the magnitude of the weights, although they do so in very different 
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ways. At the end of this chapter, we will demonstrate the approximate 
equivalence of the two methods.

We should note that in this chapter we are assuming that there is a limited 
amount of data with which to train the network. If the amount of data is 
unlimited, which in practical terms means that the number of data points 
is significantly larger than the number of network parameters, then there 
will not be a problem of overfitting.

Estimating Generalization Error - The Test Set
Before we discuss methods for improving the generalization capability of 
neural networks, we should first discuss how we can estimate this error for 
a specific neural network. Given a limited amount of available data, it is 
important to hold aside a certain subset during the training process. After 
the network has been trained, we will compute the errors that the trained 
network makes on this test set. The test set errors will then give us an in-
dication of how the network will perform in the future; they are a measure 
of the generalization capability of the network.

In order for the test set to be a valid indicator of generalization capability, 
there are two important things to keep in mind. First, the test set must 
never be used in any way to train the neural network, or even to select one 
network from a group of candidate networks. The test set should only be 
used after all training and selection is complete. Second, the test set must 
be representative of all situations for which the network will be used. This 
can sometimes be difficult to guarantee, especially when the input space is 
high-dimensional or has a complex shape. We will discuss this problem in 
more detail in Chapter 22, Practical Training Issues.

In the remaining sections of this chapter, we will assume that a test set has 
been removed from the data set before training begins, and that this set 
will be used at the completion of training to measure generalization capa-
bility.

Early Stopping
The first method we will discuss for improving generalization is also the 
simplest method. It is called early stopping [WaVe94]. The idea behind this 
method is that as training progresses the network uses more and more of 
its weights, until all weights are fully used when training reaches a mini-
mum of the error surface. By increasing the number of iterations of train-
ing, we are increasing the complexity of the resulting network. If training 
is stopped before the minimum is reached, then the network will effectively 
be using fewer parameters and will be less likely to overfit. In a later sec-
tion of this chapter we will demonstrate how the number of parameters 
changes as the number of iterations increases.

In order to use early stopping effectively, we need to know when to stop the 
training. We will describe a method, called cross-validation, that uses a 

Test Set

Cross-Validation
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validation set to decide when to stop [Sarl95]. The available data (after re-
moving the test set, as described above) is divided into two parts: a training 
set and a validation set. The training set is used to compute gradients or 
Jacobians and to determine the weight update at each iteration. The vali-
dation set is an indicator of what is happening to the network function “in 
between” the training points, and its error is monitored during the training 
process. When the error on the validation set goes up for several iterations, 
the training is stopped, and the weights that produced the minimum error 
on the validation set are used as the final trained network weights.

This process is illustrated in Figure 13.4. The graph at the bottom of this 
figure shows the progress of the training and validation performance indi-
ces,  (the sum squared errors), during training. Although the training er-
ror continues to go down throughout the training process, a minimum of 
the validation error occurs at the point labeled “a,” which corresponds to 
training iteration 14. The graph at the upper left shows the network re-
sponse at this early stopping point. The resulting network provides a good 
fit to the true function. The graph at the upper right demonstrates the net-
work response if we continue to train to point “b,” where the validation er-
ror has increased and the network is overfitting.

Figure 13.4  Illustration of Early Stopping
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The basic concept for early stopping is simple, but there are several practi-
cal issues to be addressed. First, the validation set must be chosen so that 
it is representative of all situations for which the network will be used. This 
is also true for the test and training sets, as we mentioned earlier. Each set 
must be roughly equivalent in its coverage of the input space, although the 
size of each set may be different. 

When we divide the data, approximately 70% is typically used for training, 
with 15% for validation and 15% for testing. These are only approximate 
numbers. A complete discussion of how to select the amount of data for the 
validation set is given in [AmMu97].

Another practical point to be made about early stopping is that we should 
use a relatively slow training method. During training, the network will 
use more and more of the available network parameters (as we will explain 
in the last section of this chapter). If the training method is too fast, it will 
likely jump past the point at which the validation error is minimized.

To experiment with the effect of early stopping, use the MATLAB® Neural 
Network Design Demonstration Early Stopping (nnd13es).

Regularization
The second method we will discuss for improving generalization is called 
regularization. For this method, we modify the sum squared error perfor-
mance index of Eq. (13.3) to include a term that penalizes network com-
plexity. This concept was introduced by Tikhonov [Tikh63]. He added a 
penalty, or regularization, term related to the derivatives of the approxi-
mating function (neural network in our case), which forced the resulting 
function to be smooth. Under certain conditions, this regularization term 
can be written as the sum of squares of the network weights, as in

, (13.4)

where the ratio  controls the effective complexity of the network solu-
tion. The larger this ratio is, the smoother the network response. (Note that 
we could have used a single parameter here, but developments in later sec-
tions will require two parameters.)

Why do we want to penalize the sum squared weights, and how is this sim-
ilar to reducing the number of neurons? Consider again the example mul-
tilayer network shown in Figure 11.4. Recall how increasing a weight 
increased the slope of the network function. You can see this effect again in 
Figure 13.5, where we have changed the weight  from 0 to 2. When the 
weights are large, the function created by the network can have large 
slopes, and is therefore more likely to overfit the training data. If we re-
strict the weights to be small, then the network function will create a 

F x( ) βED αEW+ β tq aq–( )T tq aq–( )
q 1=

Q

∑ α xi
2

i 1=

n

∑+= =

α β⁄

w1 1,
2



Methods for Improving Generalization

13-9

13
smooth interpolation through the training data - just as if the network had 
a small number of neurons.

Figure 13.5  Effect of Weight on Network Response

To experiment with the effect of weight changes on the network function, use 
the MATLAB® Neural Network Design Demonstration Network Function 
(nnd11nf).

The key to the success of the regularization method in producing a network 
that generalizes well is the correct choice of the regularization ratio . 
Figure 13.6 illustrates the effect of changing this ratio. Here we have 
trained a 1-20-1 network on 21 noisy samples of a sine wave.

In the figure, the blue line represents the true function, and the large open 
circles represent the noisy data. The black curve represents the trained 
network response, and the smaller circles filled with crosses represent the 
network response at the training points. From the figure, we can see that 
the ratio  produces the best fit to the true function. For ratios 
larger than this, the network response is too smooth, and for ratios smaller 
than this, the network overfits.

There are several techniques for setting the regularization parameter. One 
approach is to use a validation set, such as we described in the section on 
early stopping; the regularization parameter is set to minimize the squared 
error on the validation set [GoLa98]. In the next two sections we will de-
scribe a different technique for automatically setting the regularization pa-
rameter. It is called Bayesian regularization.
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Figure 13.6  Effect of Regularization Ratio

To experiment with the effect of regularization, use the MATLAB® Neural 
Network Design Demonstration Regularization (nnd13reg).

Bayesian Analysis
Thomas Bayes was a Presbyterian minister who lived in England during 
the 1700’s. He was also an amateur mathematician. His most important 
work was published after his death. In it, he presented what is now known 
as Bayes’ Theorem. The theorem states that if you have two random 
events,  and , then the conditional probability of the occurrence of , 
given the occurrence of  can be computed as

. (13.5)

Eq. (13.5) is called Bayes’ rule. Each of the terms in this expression has a 
name by which it is commonly referred.  is called the prior probability. 
It tells us what we know about  before we know the outcome of .  
is called the posterior probability. This tells us what we know about  after 
we learn about .  is the conditional probability of  given . Nor-
mally this term is given by our knowledge of the system that describes the 
relationship between  and .  is the marginal probability of the 
event , and it acts as a normalization factor in Bayes’ rule.
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To illustrate how Bayes’ rule can be used, consider the following medical 
situation. Assume that 1% of the population have a certain disease. There 
is a test that can be performed to detect the presence of this disease. The 
test is 80% accurate in detecting the disease in people who have it. Howev-
er, 10% of the time, someone without the disease will register a positive 
test. If you take the test and register positive, your question would be: 
What is the probability that I actually have the disease? Most of us (includ-
ing most physicians, as has been shown in many studies), would guess that 
the probability is very high, considering that the test is 80% accurate in de-
tecting the disease in a sick person. However, this turns out not to be the 
case, and Bayes’ rule can help us overcome this lack of intuition, when it 
comes to probability.

Let  represent the event that you have the disease. Let  represent the 
event that you have a positive test result. We can then use Bayes’ rule to 
find , which is the probability that you have the disease, given that 
you have a positive test. We know that the prior probability  would be 
0.01, because 1% of the population have the disease.  is 0.8, because 
the test is 80% accurate in detecting the disease in people who have it. (No-
tice that this conditional probability is based on our knowledge of the test 
procedure and its accuracy.) In order to use Bayes’ rule, we need one more 
term, which is . This is the probability of getting a positive test, 
whether or not you have the disease. This can be obtained by adding the 
probability of having a positive test when you have the disease to the prob-
ability of having a positive test when you don’t have the disease:

, (13.6)

where we have used the definition of conditional probability:

, or . (13.7)

If we plug in our known probabilities into Eq. (13.6), we find

, (13.8)

where  is 0.1, because 10% of health people register a positive test. 
We can now use Bayes’ rule to find the posterior probability :

. (13.9)

This tells us that even if you get a positive test, you only have a 7.5% chance 
of having the disease. For most of us, this result is not intuitive.

The key to Bayes’ rule is the prior probability . In this case, the prior 
odds of having the disease were only 1 in 100. If this number had been 
much higher, then our posterior probability  would have also in-
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creased significantly. It is important when using Bayes’ rule to have the 
prior probability  accurately reflect our prior knowledge.

For another example of using Bayes’ rule and the effect of the prior density, 
see Solved Problem P13.2 and its associated demonstration.

In the next section, we will apply Bayesian analysis to the training of mul-
tilayer networks. The advantage of Bayesian methods is that we can insert 
prior knowledge through the selection of the prior probability. For neural 
network training, we will make the prior assumption that the function we 
are approximating is smooth. This means that the weights cannot be too 
large, as was demonstrated in Figure 13.5. The trick will be to incorporate 
this prior knowledge into an appropriate choice for the prior probability.

Bayesian Regularization
Although there have been many approaches to the automatic selection of 
the regularization parameter, we will concentrate on one developed by 
David MacKay [MacK92]. This approach puts the training of neural net-
works into a Bayesian statistical framework. This framework is useful for 
many aspects of training, in addition to the selection of the regularization 
parameter, so it is an important concept to become familiar with. There are 
two levels to this Bayesian analysis. We will begin with Level I.

Level I Bayesian Framework

The Bayesian framework begins with the assumption that the network 
weights are random variables. We then choose the weights that maximize 
the conditional probability of the weights given the data. Bayes’ rule is 
used to find this probability function:

, (13.10)

where  is the vector containing all of the weights and biases in the net-
work,  represents the training data set,  and  are parameters associ-
ated with the density functions  and , and  is the 
selected model - the architecture of the network we have chosen (i.e., how 
many layers and how may neurons in each layer).

It is worth taking some time to investigate each of the terms in Eq. (13.10). 
First,  is the probability density for the data, given a certain 
set of weights , the parameter  (which we will explain shortly), and the 
choice of model . If we assume that the noise terms in Eq. (13.2) are in-
dependent and have a Gaussian distribution, then

, (13.11)
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where ,  is the variance of each element of ,  is the 
squared error (as defined in Eq. (13.3)), and

, (13.12)

where  is , as in Eq. (12.34).

Eq. (13.11) is called the likelihood function. It is a function of the network 
weights , and it describes how likely a given data set is to occur, given a 
specific set of weights. The maximum likelihood method selects the weights 
so as to maximize the likelihood function, which in this Gaussian case is 
the same as minimizing the squared error . Therefore, our standard 
sum squared error performance index can be derived statistically with the 
assumption of Gaussian noise in the training set, and our standard choice 
for the weights is the maximum likelihood estimate.

Now consider the second term on the right side of Eq. (13.10): . 
This is called the prior density. It embodies our knowledge about the net-
work weights before we collect any data. Bayesian statistics allows us to in-
corporate prior knowledge through the prior density. For example, if we 
assume that the weights are small values centered around zero, we might 
select a zero-mean Gaussian prior density:

(13.13)

where ,  is the variance of each of the weights,  is the 
sum squared weights (as defined in Eq. (13.4)), and

, (13.14)

where  is the number of weights and biases in the network, as in Eq. 
(12.35).

The final term on the right side of Eq. (13.10) is . This is called 
the evidence, and it is a normalizing term that is not a function of . If our 
objective is to find the weights  that maximize the posterior density 

, then we do not need to be concerned with . 
(However, it will be important later for estimating  and .)

With the Gaussian assumptions that we made earlier, we can rewrite the 
posterior density, using Eq. (13.10), in the following form:
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(13.15)

where  is a function of  and  (but not a function of ), and  
is our regularized performance index, which we defined in Eq. (13.4). To 
find the most probable value for the weights, we should maximize the pos-
terior density . This is equivalent to minimizing the regu-
larized performance index .

Therefore, our regularized performance index can be derived using Baye-
sian statistics, with the assumption of Gaussian noise in the training set 
and a Gaussian prior density for the network weights. We will identify the 
weights that maximize the posterior density as , or most probable. This 
is to be contrasted with the weights that maximize the likelihood function: 

.

Note how this statistical framework provides a physical meaning for the 
parameters  and . The parameter  is inversely proportional to the 
variance in the measurement noise . Therefore, if the noise variance is 
large,  will be small, and the regularization ratio  will be large. This 
will force the resulting weights to be small and the network function to be 
smooth (as seen in Figure 13.6). The larger the measurement noise, the 
more we will smooth the network function, in order to average out the af-
fects of the noise.

The parameter  is inversely proportional to the variance in the prior dis-
tribution for the network weights. If this variance is large, it means that 
we have very little certainty about the values of the network weights, and, 
therefore, they might be very large. The parameter  will then be small, 
and the regularization ratio  will also be small. This will allow the net-
work weights to be large, and the network function will be allowed to have 
more variation (as seen in Figure 13.6). The larger the variance in the prior 
density for the network weights, the more variation the network function 
will be allowed to have.

Level II Bayesian Framework

So far we have an interesting statistical derivation of the regularized per-
formance index and some new insight into the meanings of the parameters 

 and , but what we really want to find is a way to estimate these param-
eters from the data. In order to do this, we need to take the Bayesian anal-
ysis to another level. If we want to estimate  and  using Bayesian 
analysis, we need the probability density . Using Bayes’ rule 
this can written

P x D α β M, , ,( )

1
ZW α( )
---------------- 1

ZD β( )
--------------- βED αEW+( )–( )exp

Normalization Factor
-----------------------------------------------------------------------------------=

1
ZF α β,( )
--------------------- F x( )–( )exp=

ZF α β,( ) α β x F x( )

P x D α β M, , ,( )
F x( ) βED αEW+=
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xML

α β β
εq

β α β⁄
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α
α β⁄

α β

α β
P α β D M,,( )
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. (13.16)

This has the same format as Eq. (13.10), with the likelihood function and 
the prior density in the numerator of the right hand side. If we assume a 
uniform (constant) prior density  for the regularization parame-
ters  and , then maximizing the posterior is achieved by maximizing the 
likelihood function . However, note that this likelihood func-
tion is the normalization factor (evidence) from Eq. (13.10). Since we have 
assumed that all probabilities have a Gaussian form, we know the form for 
the posterior density of Eq. (13.10). It is shown in Eq. (13.15). Now we can 
solve Eq. (13.10) for the normalization factor (evidence).

(13.17)

Note that we know the constants  and  from Eq. (13.12) and 
Eq. (13.14). The only part we do not know is . However, we can es-
timate it by using a Taylor series expansion. 

Since the objective function has the shape of a quadratic in a small area 
surrounding a minimum point, we can expand  in a second order Tay-
lor series (see Eq. (8.9)) around its minimum point, , where the gradi-
ent is zero:

, (13.18)

where  is the Hessian matrix of , and  is the 
Hessian evaluated at . We can now substitute this approximation into 
the expression for the posterior density, Eq. (13.15):

, (13.19)

which can be rewritten as
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. (13.20)

The standard form of the Gaussian density is

. (13.21)

Therefore, equating Eq. (13.21) with Eq. (13.20), we can solve for :

. (13.22)

Placing this result into Eq. (13.17), we can solve for the optimal values for 
 and  at the minimum point. We do this by taking the derivative with 

respect to each of the log of Eq. (13.17) and set them equal to zero. This 
yields (see Solved Problem P13.3):

 and , (13.23)

where  is called the effective number of parameters, 
and  is the total number of parameters in the network. The term  is a 
measure of how many parameters (weights and biases) in the neural net-
work are effectively used in reducing the error function. It can range from 
zero to . (See the example on page 13-23 for more analysis of .)

Bayesian Regularization Algorithm

The Bayesian optimization of the regularization parameters requires the 
computation of the Hessian matrix of  at the minimum point . We 
propose using the Gauss-Newton approximation to the Hessian matrix 
[FoHa97], which is readily available if the Levenberg-Marquardt optimiza-
tion algorithm is used to locate the minimum point (see Eq. (12.31)). The 
additional computation required for optimization of the regularization is 
minimal.

Here are the steps required for Bayesian optimization of the regularization 
parameters, with the Gauss-Newton approximation to Hessian matrix:

0.  Initialize ,  and the weights. The weights are initialized randomly, 
and then  and  are computed. Set , and compute  and  
using Eq. (13.23).

1. Take one step of the Levenberg-Marquardt algorithm toward minimiz-
ing the objective function .

2. Compute the effective number of parameters , mak-
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ing use of the Gauss-Newton approximation to the Hessian available in 
the Levenberg-Marquardt training algorithm: 

, where  is the Jacobian matrix of the 
training set errors (see Eq. (12.37)).

3. Compute new estimates for the regularization parameters 
 and .

4. Now iterate steps 1 through 3 until convergence.

Bear in mind that with each reestimate of the regularization parameters 
 and  the objective function  changes; therefore, the minimum 

point is moving. If traversing the performance surface generally moves to-
ward the next minimum point, then the new estimates for the regulariza-
tion parameters will be more precise. Eventually, the precision will be good 
enough that the objective function will not significantly change in subse-
quent iterations. Thus, we will obtain convergence.

When this Gauss-Newton approximation to Bayesian regularization 
(GNBR) algorithm is used, the best results are obtained if the training data 
is first mapped into the range [-1,1] (or some similar region). We will dis-
cuss this preprocessing of the training data in Chapter 22.

In Figure 13.7 you can see the results of training a 1-20-1 network with 
GNBR on the same data set represented in Figure 13.4 and Figure 13.6. 
The network has fit the underlying function, without overfitting to the 
noise. The fit looks similar to that obtained in Figure 13.6, with the regu-
larization ratio set to . In fact, at the completion of training 
with GNBR, the final regularization ratio for this example was 

.

The training process for this example is illustrated in Figure 13.8. In the 
upper left of this figure, you see the squared error on the training set. No-
tice that it does not necessarily go down at each iteration. In the upper 
right of the figure, you see the squared testing error. This was obtained by 
comparing the network function to the true function at a number of points 
between -1 and 1. It is a measure of the generalization capability of the net-
work. (This would not be possible in a practical case, where the true func-
tion was unknown.) Note that the testing error is at its minimum at the 
completion of training. 

H F x( ) 2βJTJ 2αIn+≈∇2= J

α γ
2EW x( )
------------------= β N γ–

2ED x( )
------------------=

α β F x( )

GNBR

α β⁄ 0.01=

α β⁄ 0.0137=
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Figure 13.7  Bayesian Regularization Fit

Figure 13.8 also shows the regularization ratio  and the effective num-
ber of parameters  during training. These parameters have no particular 
meaning during the training process, but at the completion of training they 
are significant. As we mentioned earlier, the final regularization ratio was 

, which is consistent with our earlier investigation of regular-
ization - illustrated in Figure 13.6. The final effective number of parame-
ters was . This is out of a total of 61 total weights and biases in the 
network.

Figure 13.8  Bayesian Regularization Training Process

The fact that in this example the effective number of parameters is much 
less than the total number of parameters (6 versus 61) means that we 
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might well have been able to use a smaller network to fit this data. There 
are two disadvantages of a large network: 1) it may overfit the data, and 2) 
it requires more computation to calculate the network output. We have 
overcome the first disadvantage by training with GNBR; although the net-
work has 61 parameters, it is equivalent to a network with only 6 parame-
ters. The second disadvantage is only important if the calculation time for 
the network response is critical to the application. This is not usually the 
case, since the time to calculate a network response to a particular input is 
measured in milliseconds. In those cases where the calculation time is sig-
nificant, you can train a smaller network on the data.

On the other hand, when the effective number of parameters is close to the 
total number of parameters, this can mean that the network is not large 
enough to fit the data. In this case, you should increase the size of the net-
work and retrain on the data set.

To experiment with Bayesian Regularization, use the MATLAB® Neural 
Network Design Demonstration Bayesian Regularization (nnd17breg).

Relationship Between Early Stopping and Regularization
We have discussed two techniques for improving network generalization: 
early stopping and regularization. These two methods were developed in 
very different ways, but they both improve generalization by restricting the 
network weights and, therefore, producing a network with fewer effective 
parameters. Early stopping restricts the network weights by stopping the 
training before the weights have converged to the minimum of the squared 
error. Regularization restricts the weights by adding a term to the squared 
error that penalizes large weights. In this section we want to demonstrate, 
using a linear example, an approximate equivalence of these two methods. 
During the process, we will also shed some light on the meaning of the ef-
fective number of parameters, . This development is based on the more 
general procedures described in [SjLj94].

Early Stopping Analysis

Consider the single layer linear network shown in Figure 10.1. We have 
shown in Eq. (10.12) and Eq. (10.14) that the mean square error perfor-
mance function for this linear network is quadratic, of the form

, (13.24)

where  is the Hessian matrix. In order to study the performance of early 
stopping, we will analyze the evolution of the steepest descent algorithm on 
this linear network. From Eq. (10.16), we know that the gradient of the per-
formance index is

. (13.25)

γ

F x( ) c dTx 1
2
---xTAx+ +=

A

∇F x( ) Ax d+=
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Therefore, the steepest descent algorithm (see Eq. (9.10)) will be

. (13.26)

We want to know how close we come to the minimum of the squared error 
at each iteration. For quadratic performance indices, we know that the 
minimum will occur at the following point (see Eq. (8.62)):

, (13.27)

where the superscript  indicates that this result maximizes the likeli-
hood function, in addition to minimizing the squared error, as we saw in 
Eq. (13.11).

We can now rewrite Eq. (13.26) as

. (13.28)

With some additional algebra we can find

, (13.29)

where . The next step is to relate  to the initial guess . 
Starting at the first iteration, using Eq. (13.29), we have

, (13.30)

where the initial guess  usually consists of random values near zero. 
Continuing to the second iteration:

. (13.31)

Following similar steps, at the kth iteration we have

, (13.32)

This key result shows how far we progress from the initial guess to the 
maximum likelihood weights in k iterations. We will use this result later to 
compare with regularization.

xk 1+ xk αgk– xk α Axk d+( )–= =

xML A 1– d–=

ML

xk 1+ xk αA xk A 1– d+( )– xk αA xk xML–( )–= =

xk 1+ I αA–[ ]xk αAxML+ Mxk I M–[ ]xML+= =

M I αA–[ ]= xk 1+ x0

x1 Mx0 I M–[ ]xML+=

x0

x2 Mx1 I M–[ ]xML+=

M2x0 M I M–[ ]xML I M–[ ]xML+ +=
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Regularization Analysis

Recall from Eq. (13.4) that the regularized performance index adds a pen-
alty term to the sum squared error, as in

. (13.33)

For the following analysis, it will more convenient to consider the following 
equivalent (because the minimum occurs at the same place) performance 
index

, (13.34)

which has only one regularization parameter.

The sum squared weight penalty term  can be written

, (13.35)

where the nominal value  is normally taken to be the zero vector.

In order to locate the minimum of the regularized performance index, 
which is also the most probable value , we will set the gradient equal 
to zero:

. (13.36)

The gradient of the penalty term, Eq. (13.35), is

. (13.37)

From Eq. (13.25) and Eq. (13.28), the gradient of the sum squared error is

. (13.38)

We can now set the total gradient to zero:

. (13.39)

The solution of Eq. (13.39) is the most probable value for the weights, . 
We can make that substitution and perform some algebra to obtain

(13.40)

Now combine the terms multiplying :
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. (13.41)

Solving for , we find

, (13.42)

where . 

We want to know the relationship between the regularized solution  
and the minimum of the squared error , so we can solve Eq. (13.42) for 

:

. (13.43)

This is the key result that describes the relationship between the regular-
ized solution and the minimum of the squared error. By comparing Eq. 
(13.43) with Eq. (13.32), we can investigate the relationship between early 
stopping and regularization. We will do that in the next section.

Connection Between Early Stopping and Regularization

To compare early stopping and regularization, we need to compare Eq. 
(13.43) and Eq. (13.32). They are summarized in Figure 13.9. We would like 
to find out when these two solutions are equal. In other words, when do ear-
ly stopping and regularization produce the same weights?

Figure 13.9  Early Stopping and Regularization Solutions

The key matrix for early stopping is . The key matrix for 
regularization is . If these two matrices are equal, then 
the weights for early stopping will be the same as the weights for regular-
ization. In Eq. (9.22) we showed that the eigenvectors of  are the same 
as the eigenvectors of  and that the eigenvalues of  are , 
where the eigenvalues of  are . The eigenvalues of  are then

. (13.44)

Now let’s consider the matrix . First, using the same procedures that 
led to Eq. (9.22), we can show that the eigenvectors of  are the 
same as the eigenvectors of , and the eigenvalues of  are 
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. Also, the eigenvectors of the inverse of a matrix are the same as 

the eigenvectors of the original matrix, and the eigenvalues of the inverse 
are the reciprocals of the original eigenvalues. Therefore, the eigenvectors 
of  are the same as the eigenvectors of , and the eigenvalues of  are

. (13.45)

Therefore, in order for  to equal , they just need to have equal eigen-
values:

. (13.46)

Take the logarithm of both sides:

. (13.47)

These expressions are equal at , so they will always be equal if their 
derivatives are equal. Taking derivatives of both sides, we have

, (13.48)

or

. (13.49)

If  is small (slow, stable learning) and  is small, then we have 
the approximate result

. (13.50)

Therefore, early stopping is approximately equivalent to regularization. In-
creasing the number of iterations  is approximately the same as decreas-
ing the regularization parameter .

Example, Interpretation of Effective Number of Parameters

We will illustrate this result with a simple example. Suppose that we have 
a single layer, linear network with no bias. The input/target pairs are given 
by 
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, ,

where the probability of the first pair is 0.75, and the probability of the sec-
ond pair is 0.25. Following Eq. (10.13) and Eq. (10.15), we can find the qua-
dratic mean square error performance index as

,

,

,

,

.

The minimum of the mean squared error occurs at

.

Now let’s investigate the eigensystem of the Hessian matrix of :

.
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.

For ,

,

and for ,

.

The contour plot for  is shown in Figure 13.10

Figure 13.10  Contour Plot for 

Now consider the regularized performance index of Eq. (13.34). Its Hessian 
matrix will be

.

In Figure 13.11 we have contour plots for  as  is equal to 0, 1 and .
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Figure 13.11  Contour Plot for 

In Figure 13.12 the blue curve represents the movement of  as  is var-
ied. 

Figure 13.12   as  is Varied

Now let’s compare this regularization result with early stopping. Figure 
13.13 shows the steepest descent trajectory for minimizing , starting 
from very small values for the weights. If we stop early, the result will fall 
along the blue curve. Notice that this curve is very close to the regulariza-
tion curve in Figure 13.12. If the number of iterations is very small, this is 
equivalent to a very large value for . As the number of iterations increas-
es, it is equivalent to reducing .
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Figure 13.13  Steepest Descent Trajectory

To experiment with the relationship between Early Stopping and Regular-
ization, use the MATLAB® Neural Network Design Demonstration Early 
Stopping/Regularization (nnd17esr).

It is useful to consider the relationship between the eigenvalues and eigen-
vectors of the Hessian matrix  and the results of regularization 
and early stopping. In this example,  is larger than , so  has higher 
curvature in the  direction. This means that we will get a quicker reduc-
tion in the squared error if we move in that direction first. This is shown in 
Figure 13.13, as the initial steepest descent movement is almost in the di-
rection of . Note also that in regularization, as shown in Figure 13.12, as 

 decreases from a large value, the weights move first in the  direction. 
For a given change in the weights, this direction provides the largest reduc-
tion in the squared error.

Since the eigenvalue  is smaller than , we only move in the  direc-
tion after achieving significant reduction in  in the  direction. This 
would be even more pronounced if the difference between  and  were 
greater. In the limiting case, where , we would not have to move in 
the  direction at all. We would only need to move in the  direction to 
get the complete reduction in the squared error. (This would be the case of 
the stationary valley, as in Figure 8.9.) Note that in this case we would only 
be effectively using one parameter, even though the network has two 
weights. (Of course, this one effective parameter is some combination of the 
two weights.) Therefore, the effective number of parameters is related to 
the number of eigenvalues of  that are significantly different than 
zero. We will analyze this in detail in the next section.
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Effective Number of Parameters

Recall the previous definition for the effective number of parameters:

(13.51)

We can express this in terms of the eigenvalues of . First, we can 
write the Hessian matrix as

. (13.52)

Using arguments similar to those leading to Eq. (13.44), we can show that 
the eigenvalues of  are . We can then use two properties of 
eigenvalues to compute . First, the eigenvalues of  are the re-
ciprocals of the eigenvalues of , and, second, the trace of a matrix is equal 
to the sum of its eigenvalues. Using these two properties, we can write

. (13.53)

We can now write the effective number of parameters as

, (13.54)

or

, (13.55)

where

. (13.56)

Note that , so the effective number of parameters  must fall be-
tween zero and n. If all of the eigenvalues of  are large, then the 
effective number of parameters will equal the total number of parameters. 
If some of the eigenvalues are very small, then the effective number of pa-
rameters will equal the number of large eigenvalues, as was also demon-
strated by our example in the previous section. 
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Summary of Results

Problem Statement
A network trained to generalize will perform as well in new situations as it 
does on the data on which it was trained.

Methods for Improving Generalization

Estimating Generalization Error - The Test Set
Given a limited amount of available data, it is important to hold aside a cer-
tain subset during the training process. After the network has been 
trained, we will compute the errors that the trained network makes on this 
test set. The test set errors will then give us an indication of how the net-
work will perform in the future; they are a measure of the generalization 
capability of the network.

Early Stopping
The available data (after removing the test set) is divided into two parts: a 
training set and a validation set. The training set is used to compute gra-
dients or Jacobians and to determine the weight update at each iteration. 
When the error on the validation set goes up for several iterations, the 
training is stopped, and the weights that produced the minimum error on 
the validation set are used as the final trained network weights.

Regularization

Bayesian Regularization

Level I Bayesian Framework

ED tq aq–( )T tq aq–( )
q 1=

Q

∑=

F x( ) βED αEW+ β tq aq–( )T tq aq–( )
q 1=

Q

∑ α xi
2

i 1=

n

∑+= =

P x D α β M, , ,( ) P D x β M, ,( )P x α M,( )
P D α β M, ,( )

-----------------------------------------------------------=
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, 

, 

Level II Bayesian Framework

 and 

Bayesian Regularization Algorithm

0. Initialize ,  and the weights. The weights are initialized randomly, 
and then  and  are computed. Set , and compute  and  
using Eq. (13.23).

1. Take one step of the Levenberg-Marquardt algorithm toward minimiz-
ing the objective function .

2. Compute the effective number of parameters , mak-
ing use of the Gauss-Newton approximation to the Hessian available in 
the Levenberg-Marquardt training algorithm: 

, where  is the Jacobian matrix of the 
training set errors (see Eq. (12.37)).

3. Compute new estimates for the regularization parameters 
 and .

4. Now iterate steps 1 through 3 until convergence.
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Relationship Between Early Stopping and Regularization

Effective Number of Parameters
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Solved Problems

P13.1 In this problem and in the following one we want to investigate the 
relationship between maximum likelihood methods and Bayesian 
methods. Suppose that we have a random variable that is uniform-
ly distributed between 0 and x. We take a series of Q independent 
samples of the random variable. Find the maximum likelihood es-
timate of x.

Before we begin this problem, let’s review the Level I Bayesian formulation 
of Eq. (13.10). We will not need the Level II formulation for this simple 
problem, so we do not need the regularization parameters. Also, we only 
have a single parameter to estimate, so x is a scalar. Eq. (13.10) can then 
be simplified to

.

We are interested in the maximum likelihood estimate for this problem, so 
we need to find the value of x that maximizes the likelihood term . 
The data is the Q independent samples from the uniformly distributed ran-
dom variable. A graph of the uniform density function is given in Figure 
P13.1.

Figure P13.1  Uniform Density Function

The definition can be written

P x D( ) P D x( )P x( )
P D( )

------------------------------=

P D x( )

x

1
x
---

f t x( )

t
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.

If we have Q independent samples of the random variable, then we can 
multiply each of the individual probabilities to get the joint probability of 
all samples:

The plot of the resulting likelihood function is shown in Figure P13.1.

Figure P13.2  Likelihood Function for Solved Problem P13.1

From this plot, we can see that the value of  that maximizes the likelihood 
function is 

.

Therefore, the maximum likelihood estimate of  is the maximum value 
obtained from the Q independent samples of the random variable. This 
seems like a reasonable estimate of , which is the upper limit of the ran-
dom variable.

P13.2 In this problem we will compare the maximum likelihood and 
Bayesian estimators. Assume that we have a series of measure-
ments of a random signal in noise:
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Assume that the noise has a Gaussian density, with zero mean:

i. Find the maximum likelihood estimate of .

Assume that  is a zero-mean random variable, with Gaussian pri-
or density:

ii. Find the most probable estimate of .

i. To find the maximum likelihood estimate, we need to find the likelihood 
function . This represents the density of the data, given . The first 
step is to use the noise density to find the density of the measurement. 
Since, with  given, the density for the measurement would be the same as 
the density for the noise, but with a mean of , we have

.

Assuming that the measurement noises are independent, we can multiply 
the probability densities:

where

, , .

To maximize the likelihood, we should minimize . Setting the derivative 
to zero, we find
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Solving for , we find the maximum likelihood estimate:

ii. To find the most probable estimate, we need to use Bayes’ rule (Eq. 
(13.10)) to find the posterior density:

.

The likelihood function  was found above to be

The prior density is

,

where

, , .

The posterior density can then be computed as

To find the most probable value for x, we maximize the posterior density. 
This is equivalent to minimizing
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.

To find the minimum, we take the derivative with respect to  and set it 
equal to zero:

Solving for , we obtain

      

Notice that as  goes to zero (variance  goes to infinity),  approach-
es . Increasing the variance of the prior density represents uncertainty 
in our prior knowledge about x. With large prior uncertainty, we rely on the 
data for our estimate of x.

Figure P13.3 illustrates ,  and  for the case where 
, ,  and . Here the variance associated with the 

measurement is smaller than the variance associated with our prior densi-
ty for , so  is closer to  than it is to the maximum of the 
prior density, which occurs at 0.

To experiment with this signal in noise example, use the MATLAB® Neural 
Network Design Demonstration Signal Plus Noise (nnd17spn).
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Figure P13.3  Prior and Posterior Density Functions

P13.3 Derive Eq. (13.23).

To solve for  and , we will take the derivatives of the log of 
, given in Eq. (13.17), with respect to  and , and set the de-

rivatives to zero. Taking the log of Eq. (13.17), and substituting Eq. (13.12), 
Eq. (13.14) and Eq. (13.22), we obtain

We will consider first the second term in this expression. Since  is the 
Hessian of  in Eq. (13.4), we can write it as 

, where . If we let  
be an eigenvalue of  and  be an eigenvalue of , then  
for all corresponding eigenvalues. Now we take the derivative of the second 
term in the above equation with respect to . Since the determinant of a 
matrix can be expressed as the product of its eigenvalues, we can reduce it 
as shown below, where  is the trace of the inverse of the Hessian . 
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Next, we will take the derivative of the same term with respect to . First, 
define the parameter , as shown below, and expand it for use in our next 
step. The parameter  is referred to as the effective number of parameters.

Now take the derivative of  with respect to .

α∂
∂ 1

2
--- detlog H 1

2detH
----------------

α∂
∂ λh

k 1=

n

∏⎝ ⎠
⎜ ⎟
⎛ ⎞

=

1
2detH
----------------

α∂
∂ λi

b 2α+( )
i 1=

n

∏⎝ ⎠
⎜ ⎟
⎛ ⎞

=

1
2detH
---------------- λj

b 2α+( )
j i≠
∏⎝ ⎠
⎛ ⎞

α∂
∂ λi

b 2α+( )
i 1=

n

∑=

λj
b 2α+( )

j i≠
∏⎝ ⎠
⎛ ⎞

i 1=

n

∑

λi
b 2α+( )

i 1=

n

∏

----------------------------------------------=

1
λi

b 2α+
------------------- tr H 1–

( )=

i 1=

n

∑=

β
γ
γ

γ n 2αtr H 1–
( )–≡

n 2α 1
λi

b 2α+
-------------------

i 1=

N

∑–= 1 2α
λi

b 2α+
-------------------–

⎝ ⎠
⎜ ⎟
⎛ ⎞

i 1=

n

∑
λi

b

λi
b 2α+

-------------------
⎝ ⎠
⎜ ⎟
⎛ ⎞

i 1=

n

∑
λi

b

λi
h

-----

i 1=

n

∑= = =

1
2
--- det HMP( )log β



Solved Problems

13-39

13

where the fourth step is derived from the fact that  is an eigenvalue of 
, and therefore the derivative of  with respect to  is just the eigen-

value of  which is .

Now we are finally ready to take the derivatives of all terms in 
 and set them equal to zero. The derivative with respect to 

 will be

Rearranging terms, and using our definition of , we have
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We now repeat the process for .

Rearranging terms,

P13.4 Demonstrate that extrapolation can occur in a region that is sur-
rounded by training data.

Consider the function displayed in Figure 13.3. In that example, extrapo-
lation occurred in the upper left region of the input space, because all of the 
training data was in the lower right. Let’s provide training data around the 
outside of the input space, but without data in the region

.

The training data is distributed as shown in Figure P13.4.

Figure P13.4  Training Data Locations
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The result of the training is shown in Figure P13.5. The neural network ap-
proximation significantly overestimates the true function in the region 
without training data, even though surrounded by regions with training 
data. In addition, this result is random. With a different set of initial ran-
dom weights, the network might underestimate the true function in this re-
gion. Extrapolation occurs because there is a significantly large region 
without training data. When the input space is of high dimension, it can be 
very difficult to tell when a network is extrapolating. It cannot be done by 
simply checking the individual ranges of each input variable.

Figure P13.5  Function (a) and Neural Network Approximation (b)

P13.5 Consider the example starting on page 13-23. Find the effective 
number of parameters if .

To find the effective number of parameters, we can use Eq. (13.55):
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Substituting our numbers, we find

.

Therefore, we are using approximately one of the two available parame-
ters. The network has two parameters:  and . The parameter we 
are using is not one of these two, but rather a combination. As we can see 
from Figure 13.11, we move in the direction of the second eigenvector:

,

which means that we are changing  and  by the same amount. Al-
though there are two parameters, we are effectively using only one. Since 

 is the eigenvector with the largest eigenvalue, we move in that direction 
to obtain the greatest reduction in the squared error. 

P13.6 Demonstrate overfitting with polynomials. Consider fitting a poly-
nomial

to a set of data  so as to minimize the fol-
lowing squared error performance function.

First, we want to express the problem in matrix form. Define the following 
vectors.

  

We can then write the performance index as follows.
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To locate the minimum, we take the gradient and set it equal to zero.

Solving for the weights, we obtain the least squares solution (maximum 
likelihood for the Gaussian noise case).

To demonstrate the operation of the polynomial fitting, we will use the sim-
ple linear function . To create the data set, we will sample the func-
tion at five different points and will add noise as follows

, ,

where  has a uniform density with range . The code below 
shows how to generate the data and fit a 4th order polynomial. The results 
of fitting 2nd and 4th order polynomials are shown in Figure P13.6. The 4th 
order polynomial has five parameters, which allow it to exactly fit the five 
noisy data points, but it doesn’t produce an accurate approximation of the 
true function.

p = -1:.5:1;
t = p + 0.5*(rand(size(p))-0.5);
Q = length(p);
ord = 4;
G = ones(Q,1);
for i=1:ord,
    G = [G (p').^i];
end
x = (G'*G)\G'*t'; % Could also use x = G\t';

Figure P13.6  Polynomial Approximations to a Straight Line

F x( )∇ 2GTt– 2GTGx+ 0= =

GTG[ ]xML GTt= ⇒ xML GTG[ ]
1–
GTt=

t p=

ti pi εi+= p 1– 0.5– 0 0.5 1, , , ,{ }=

εi 0.25– 0.25,[ ]

» 2 + 2

ans =
      4

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

1.5

 

 

Function
Data
2nd Order
4th Order



13 Generalization

13-44

Epilogue

The focus of this chapter has been the development of algorithms for 
training multilayer neural networks so that they generalize well. A 
network that generalizes well will perform as well in new situations as it 
performs on the data for which it was trained. 

The basic approach to producing networks that generalize well is to find 
the simplest network that can represent the data. A simple network is one 
that has a small number of weights and biases.

The two methods that we presented in this chapter, early stopping and reg-
ularization, produce simple networks by constraining the weights, rather 
than by reducing the number of weights. We showed in this chapter that 
constraining the weights is equivalent to reducing the number of weights.
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Exercises

E13.1 Consider fitting a polynomial (kth order)

to a set of data . It has been proposed that min-
imizing a performance index that penalizes the derivatives of the polyno-
mial will provide improved generalization. Investigate the relationship 
between this technique and regularization using squared weights.

i. Derive the least squares solution for the weights , which minimiz-
es the following squared error performance index. (See Solved Prob-
lem P13.6.)

ii. Derive the regularized least squares solution, with a squared 
weight penalty.

iii. Derive a solution for the weights that minimizes a sum of the 
squared error plus a sum of squared derivatives.

iv. Derive a solution for the weights that minimizes a sum of the 
squared error plus a sum of squared second derivatives.

E13.2 Write a MATLAB program to implement the solutions you found in E13.1 
i. through iv. Using the following data points, adjust the  values to obtain 
the best results. Use  for all cases. Plot the data points, the noise-free 
function ( ) and the polynomial approximation in each case. Compare 
the four approximations. Which do you think produces the best results? 
Which cases produce similar results?
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, ,

where  has a uniform density with range  (use the randn com-
mand in MATLAB).

E13.3 Investigate the extrapolation characteristics of neural networks and poly-
nomials. Consider the problem described in E11.11, where a sine wave is 
fit over the range . Select 11 training points evenly spaced over 
this interval.

i. After fitting the 1-2-1 neural network over this range, plot the actu-
al sine function and the neural network approximation over the 
range . 

ii. Fit a fifth-order polynomial (which has the same number of free pa-
rameters as the 1-2-1 network) to the sine wave over the range 

 (using your results from E13.1 i.). Plot the actual function 
and the polynomial approximation over the range .

iii. Discuss the extrapolation characteristics of the neural network and 
the polynomial.

E13.4 Suppose that we have a random variable  that is distributed according to 
the following density function. We take a series of Q independent samples 
of the random variable. Find the maximum likelihood estimate of  - .

E13.5 For the random variable given in E13.4, suppose that  is a random vari-
able with the following prior density function. Find the most probable esti-
mate of  - . 

E13.6 Repeat E13.5 for the following prior density function. Under what condi-
tions will ?

E13.7 In the signal plus noise example given in Solved Problem P13.2, find  
for the following prior density functions.

i.
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ii.

E13.8 Suppose that the prior density in the level I Bayesian analysis (see page 13-
12) has nonzero mean, . Find the new performance index.

E13.9 Repeat E11.11, but modify your program to use early stopping and to use 
30 neurons. Select 10 training points and 5 validation points. Add noise to 
the validation and testing points that is uniformly distributed between 

and  (using the MATLAB function rand). Measure the mean square 
error of the trained network on a testing set consisting of 20 equally-spaced 
points of the noise-free function. Try 10 different random sets of training 
and validation data. Compare the results with early-stopping with the re-
sults without early stopping.

E13.10 Repeat E13.9, but use regularization instead of early stopping. This will re-
quire modifying your program to compute the gradient of the regularized 
performance index. Add the standard gradient of the squared error, which 
is computed by the standard backpropagation algorithm, to the gradient of 

 times the squared weights. Try three different values of . Compare 
these results with the early stopping results.

E13.11 Consider again the problem described in E10.4

i. Find the regularized performance index for . Sketch the 
contour plot in each case. Indicate the location of the optimal 
weights in each case.

ii. Find the effective number of parameters for .

iii. Starting with zero initial weights, approximately how many itera-
tions of the steepest descent algorithm would need to be made on the 
mean square performance index to produce results that would be 
equivalent to minimizing the regularized performance index with 

? Assume a learning rate of .

iv. Write a MATLAB M-file to implement the steepest descent algo-
rithm to minimize the mean square error performance index that 
you found in part i. (This is a quadratic function.) Start the algo-
rithm with zero initial conditions, and use a learning rate of 

. Sketch the trajectory on a contour plot of the mean square 
error (the contour plot was found in E10.4). Verify that at the itera-
tion you computed in part iii., the weights are close to the same val-
ues you found to minimize the regularized performance index with 

 in part i.
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