
Objectives

13-1

1313 Generalization

Objectives 13-1
Theory and Examples 13-2

Problem Statement 13-2
Methods for Improving Generalization 13-5

Estimating Generalization Error - The Test Set 13-6
Early Stopping 13-6
Regularization 13-8
Bayesian Analysis 13-10
Bayesian Regularization 13-12
Relationship Between Early Stopping and Regularization 13-19

Summary of Results 13-29
Solved Problems 13-32
Epilogue 13-44
Further Reading 13-45
Exercises 13-47

Objectives

One of the key issues in designing a multilayer network is determining the
number of neurons to use. In effect, that is the objective of this chapter.

In Chapter 11 we showed that if the number of neurons is too large, the net-
work will overfit the training data. This means that the error on the train-
ing data will be very small, but the network will fail to perform as well
when presented with new data. A network that generalizes well will per-
form as well on new data as it does on the training data.

The complexity of a neural network is determined by the number of free pa-
rameters that it has (weights and biases), which in turn is determined by
the number of neurons. If a network is too complex for a given data set,
then it is likely to overfit and to have poor generalization.

In this chapter we will see that we can adjust the complexity of a network
to fit the complexity of the data. In addition, this can be done without
changing the number of neurons. We can adjust the effective number of
free parameters without changing the actual number of free parameters.

13 Generalization

13-2

Theory and Examples

Mark Twain once said “We should be careful to get out of an experience
only the wisdom that is in it-and stop there; lest we be like the cat that sits
down on a hot stove-lid. She will never sit down on a hot stove-lid again-
and that is well; but also she will never sit down on a cold one any more.”
(From Following the Equator, 1897.)

That is the objective of this chapter. We want to train neural networks to
get out of the data only the wisdom that is in it. This concept is called gen-
eralization. A network trained to generalize will perform as well in new sit-
uations as it does on the data on which it was trained.

The key strategy we will use for obtaining good generalization is to find the
simplest model that explains the data. This is a variation of a principle
called Ockham’s razor, which is named after the English logician William
of Ockham, who worked in the 14th Century. The idea is that the more
complexity you have in your model, the greater the possibility for errors.

In terms of neural networks, the simplest model is the one that contains
the smallest number of free parameters (weights and biases), or, equiva-
lently, the smallest number of neurons. To find a network that generalizes
well, we need to find the simplest network that fits the data.

There are at least five different approaches that people have used to pro-
duce simple networks: growing, pruning, global searches, regularization,
and early stopping. Growing methods start with no neurons in the network
and then add neurons until the performance is adequate. Pruning methods
start with large networks, which likely overfit, and then remove neurons
(or weights) one at a time until the performance degrades significantly.
Global searches, such as genetic algorithms, search the space of all possible
network architectures to locate the simplest model that explains the data.

The final two approaches, regularization and early stopping, keep the net-
work small by constraining the magnitude of the network weights, rather
than by constraining the number of network weights. In this chapter we
will concentrate on these two approaches. We will begin by defining the
problem of generalization and by showing examples of both good and poor
generalization. We will then describe the regularization and early stopping
methods for training neural networks. Finally, we will demonstrate how
these two methods are, in affect, performing the same operation.

Problem Statement
Let’s begin our discussion of generalization by defining the problem. We
start with a training set of example network inputs and corresponding tar-
get outputs:

Generalization

Ockham’s Razor

Problem Statement

13-3

13
. (13.1)

For our development of the concept of generalization, we will assume that
the target outputs are generated by

, (13.2)

where is some unknown function, and is a random, independent
and zero mean noise source. Our training objective will be to produce a neu-
ral network that approximates , while ignoring the noise.

The standard performance index for neural network training is the sum
squared error on the training set:

, (13.3)

where is the network output for input . We are using the variable
to represent the sum squared error on the training data, because later we
will modify the performance index to include an additional term.

The problem of overfitting is illustrated in Figure 13.1. The blue curve rep-
resents the function . The large open circles represent the noisy target
points. The black curve represents the trained network response, and the
smaller circles filled with crosses represent the network response at the
training points. In this figure we can see that the network response exactly
matches the training points. However, it does a very poor job of matching
the underlying function. It overfits.

There are actually two kinds of errors that occur in Figure 13.1. The first
type of error, which is caused by overfitting, occurs for input values be-
tween -3 and 0. This is the region where all of the training data points oc-
ccur. The network response in this region overfits the training data and
will fail to perform well for input values that are not in the training set. The
network does a poor job of interpolation; it fails to accurately approximate
the function near the training points.

The second type of error occurs for inputs in the region between 0 and 3.
The network fails to perform well in this region, not because it is overfit-
ting, but because there is no training data there. The network is extrapo-
lating beyond the range of the input data.

In this chapter we will discuss methods for preventing overfitting. There is
no way to prevent errors of extrapolation. It is very important that the data
that is used to train the network cover the regions of the input space for
which the network will be used. The network has no way of knowing what
the true function looks like in regions for which there is no data.

p1 t1{ , } p2 t2{ , } … pQ tQ{ , }, , ,

tq g pq() εq+=

g .() εq

g .()

F x() ED tq aq–()T tq aq–()
q 1=

Q

∑= =

aq pq ED

Overfitting
g .()

Interpolation

Extrapolation

13 Generalization

13-4

Figure 13.1 Example of Overfitting and Poor Extrapolation

In Figure 13.2 we have an example of a network that has been trained to
generalize well. The network has the same number of weights as the net-
work of Figure 13.1, and it was trained using the same data set, but it has
been trained in such a way that it does not fully use all of the weights that
are available. It only uses as many weights as necessary to fit the data. The
network response does not fit the function perfectly, but it does the best job
it can, based on limited and noisy data.

Figure 13.2 Example of Good Interpolation and Poor Extrapolation

In both Figure 13.1 and Figure 13.2 we can see that the network fails to ex-
trapolate accurately. This is understandable, since the network has been
provided with no information about the characteristics of the function out-

−3 −2 −1 0 1 2 3
−30

−25

−20

−15

−10

−5

0

5

10

15

20

25

−3 −2 −1 0 1 2 3
−30

−25

−20

−15

−10

−5

0

5

10

15

20

25

Methods for Improving Generalization

13-5

13
side of the range . The network response outside this range will
be unpredictable. This is why it is important to have training data for all
regions of the input space for which the network will be used. It is usually
not difficult to determine the required input range when the network has
a single input, as in this example. However, when the network has many
inputs, it becomes more difficult to determine when the network is interpo-
lating and when it is extrapolating.

This problem is illustrated in a simple way in Figure 13.3. On the left side
of this figure we see the function that is to be approximated. The range for
the input variables is and . The neural network was
trained over these ranges of the two variables, but only for . There-
fore, both and cover their individual ranges, but only half of the total
input space is covered. When , the network is extrapolating, and we
can see on the right side of Figure 13.3 that the network performs poorly in
this region. (See Problem P13.4 for another example of extrapolation.) If
there are many input variables, it will be quite difficult to determine when
the network is interpolating and when it is extrapolating. We will discuss
some practical ways of dealing with this problem in Chapter 22.

Figure 13.3 Function (a) and Neural Network Approximation (b)

Methods for Improving Generalization
The remainder of this chapter will discuss methods for improving the gen-
eralization capability of neural networks. As we discussed earlier, there are
a number of approaches to this problem - all of which try to find the sim-
plest network that will fit the data. These approaches fit into two general
categories: restricting the number of weights (or, equivalently, the number
of neurons) in the network, or restricting the magnitude of the weights. We
will concentrate on two methods that we have found to be particularly use-
ful: early stopping and regularization. Both of these approaches attempt to
restrict the magnitude of the weights, although they do so in very different

3– p 0≤ ≤

3– p1 3≤ ≤ 3– p2 3≤ ≤
p1 p2≤

p1 p2
p1 p2≥

−3
−2

−1
0

1
2

3

−3

−2

−1

0

1

2

3

−6

−4

−2

0

2

4

6

8

−3
−2

−1
0

1
2

3

−3

−2

−1

0

1

2

3

−6

−4

−2

0

2

4

6

8

p1
p1

p2 p2

at

a) b)

13 Generalization

13-6

ways. At the end of this chapter, we will demonstrate the approximate
equivalence of the two methods.

We should note that in this chapter we are assuming that there is a limited
amount of data with which to train the network. If the amount of data is
unlimited, which in practical terms means that the number of data points
is significantly larger than the number of network parameters, then there
will not be a problem of overfitting.

Estimating Generalization Error - The Test Set
Before we discuss methods for improving the generalization capability of
neural networks, we should first discuss how we can estimate this error for
a specific neural network. Given a limited amount of available data, it is
important to hold aside a certain subset during the training process. After
the network has been trained, we will compute the errors that the trained
network makes on this test set. The test set errors will then give us an in-
dication of how the network will perform in the future; they are a measure
of the generalization capability of the network.

In order for the test set to be a valid indicator of generalization capability,
there are two important things to keep in mind. First, the test set must
never be used in any way to train the neural network, or even to select one
network from a group of candidate networks. The test set should only be
used after all training and selection is complete. Second, the test set must
be representative of all situations for which the network will be used. This
can sometimes be difficult to guarantee, especially when the input space is
high-dimensional or has a complex shape. We will discuss this problem in
more detail in Chapter 22, Practical Training Issues.

In the remaining sections of this chapter, we will assume that a test set has
been removed from the data set before training begins, and that this set
will be used at the completion of training to measure generalization capa-
bility.

Early Stopping
The first method we will discuss for improving generalization is also the
simplest method. It is called early stopping [WaVe94]. The idea behind this
method is that as training progresses the network uses more and more of
its weights, until all weights are fully used when training reaches a mini-
mum of the error surface. By increasing the number of iterations of train-
ing, we are increasing the complexity of the resulting network. If training
is stopped before the minimum is reached, then the network will effectively
be using fewer parameters and will be less likely to overfit. In a later sec-
tion of this chapter we will demonstrate how the number of parameters
changes as the number of iterations increases.

In order to use early stopping effectively, we need to know when to stop the
training. We will describe a method, called cross-validation, that uses a

Test Set

Cross-Validation

Methods for Improving Generalization

13-7

13
validation set to decide when to stop [Sarl95]. The available data (after re-
moving the test set, as described above) is divided into two parts: a training
set and a validation set. The training set is used to compute gradients or
Jacobians and to determine the weight update at each iteration. The vali-
dation set is an indicator of what is happening to the network function “in
between” the training points, and its error is monitored during the training
process. When the error on the validation set goes up for several iterations,
the training is stopped, and the weights that produced the minimum error
on the validation set are used as the final trained network weights.

This process is illustrated in Figure 13.4. The graph at the bottom of this
figure shows the progress of the training and validation performance indi-
ces, (the sum squared errors), during training. Although the training er-
ror continues to go down throughout the training process, a minimum of
the validation error occurs at the point labeled “a,” which corresponds to
training iteration 14. The graph at the upper left shows the network re-
sponse at this early stopping point. The resulting network provides a good
fit to the true function. The graph at the upper right demonstrates the net-
work response if we continue to train to point “b,” where the validation er-
ror has increased and the network is overfitting.

Figure 13.4 Illustration of Early Stopping

Validation Set

F

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

1.5

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

1.5

10
0

10
1

10
2

10
−1

10
0

10
1

10
2

10
3

a b

a b

p

a2

p

a2

Iteration

F

Validation

Training

13 Generalization

13-8

The basic concept for early stopping is simple, but there are several practi-
cal issues to be addressed. First, the validation set must be chosen so that
it is representative of all situations for which the network will be used. This
is also true for the test and training sets, as we mentioned earlier. Each set
must be roughly equivalent in its coverage of the input space, although the
size of each set may be different.

When we divide the data, approximately 70% is typically used for training,
with 15% for validation and 15% for testing. These are only approximate
numbers. A complete discussion of how to select the amount of data for the
validation set is given in [AmMu97].

Another practical point to be made about early stopping is that we should
use a relatively slow training method. During training, the network will
use more and more of the available network parameters (as we will explain
in the last section of this chapter). If the training method is too fast, it will
likely jump past the point at which the validation error is minimized.

To experiment with the effect of early stopping, use the MATLAB® Neural
Network Design Demonstration Early Stopping (nnd13es).

Regularization
The second method we will discuss for improving generalization is called
regularization. For this method, we modify the sum squared error perfor-
mance index of Eq. (13.3) to include a term that penalizes network com-
plexity. This concept was introduced by Tikhonov [Tikh63]. He added a
penalty, or regularization, term related to the derivatives of the approxi-
mating function (neural network in our case), which forced the resulting
function to be smooth. Under certain conditions, this regularization term
can be written as the sum of squares of the network weights, as in

, (13.4)

where the ratio controls the effective complexity of the network solu-
tion. The larger this ratio is, the smoother the network response. (Note that
we could have used a single parameter here, but developments in later sec-
tions will require two parameters.)

Why do we want to penalize the sum squared weights, and how is this sim-
ilar to reducing the number of neurons? Consider again the example mul-
tilayer network shown in Figure 11.4. Recall how increasing a weight
increased the slope of the network function. You can see this effect again in
Figure 13.5, where we have changed the weight from 0 to 2. When the
weights are large, the function created by the network can have large
slopes, and is therefore more likely to overfit the training data. If we re-
strict the weights to be small, then the network function will create a

F x() βED αEW+ β tq aq–()T tq aq–()
q 1=

Q

∑ α xi
2

i 1=

n

∑+= =

α β⁄

w1 1,
2

Methods for Improving Generalization

13-9

13
smooth interpolation through the training data - just as if the network had
a small number of neurons.

Figure 13.5 Effect of Weight on Network Response

To experiment with the effect of weight changes on the network function, use
the MATLAB® Neural Network Design Demonstration Network Function
(nnd11nf).

The key to the success of the regularization method in producing a network
that generalizes well is the correct choice of the regularization ratio .
Figure 13.6 illustrates the effect of changing this ratio. Here we have
trained a 1-20-1 network on 21 noisy samples of a sine wave.

In the figure, the blue line represents the true function, and the large open
circles represent the noisy data. The black curve represents the trained
network response, and the smaller circles filled with crosses represent the
network response at the training points. From the figure, we can see that
the ratio produces the best fit to the true function. For ratios
larger than this, the network response is too smooth, and for ratios smaller
than this, the network overfits.

There are several techniques for setting the regularization parameter. One
approach is to use a validation set, such as we described in the section on
early stopping; the regularization parameter is set to minimize the squared
error on the validation set [GoLa98]. In the next two sections we will de-
scribe a different technique for automatically setting the regularization pa-
rameter. It is called Bayesian regularization.

−2 −1 0 1 2
−1

0

1

2

3

w1 1,
2 0=

w1 1,
2 2=

p

a2

α β⁄

α β⁄ 0.01=

13 Generalization

13-10

Figure 13.6 Effect of Regularization Ratio

To experiment with the effect of regularization, use the MATLAB® Neural
Network Design Demonstration Regularization (nnd13reg).

Bayesian Analysis
Thomas Bayes was a Presbyterian minister who lived in England during
the 1700’s. He was also an amateur mathematician. His most important
work was published after his death. In it, he presented what is now known
as Bayes’ Theorem. The theorem states that if you have two random
events, and , then the conditional probability of the occurrence of ,
given the occurrence of can be computed as

. (13.5)

Eq. (13.5) is called Bayes’ rule. Each of the terms in this expression has a
name by which it is commonly referred. is called the prior probability.
It tells us what we know about before we know the outcome of .
is called the posterior probability. This tells us what we know about after
we learn about . is the conditional probability of given . Nor-
mally this term is given by our knowledge of the system that describes the
relationship between and . is the marginal probability of the
event , and it acts as a normalization factor in Bayes’ rule.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

1.5

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

1.5

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

1.5

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

1.5

α β⁄ 0= α β⁄ 0.01=

α β⁄ 0.25= α β⁄ 1=

A B A
B

P A B() P B A()P A()
P B()

-------------------------------=

P A()
A B P A B()

A
B P B A() B A

B A P B()
B

Methods for Improving Generalization

13-11

13
To illustrate how Bayes’ rule can be used, consider the following medical
situation. Assume that 1% of the population have a certain disease. There
is a test that can be performed to detect the presence of this disease. The
test is 80% accurate in detecting the disease in people who have it. Howev-
er, 10% of the time, someone without the disease will register a positive
test. If you take the test and register positive, your question would be:
What is the probability that I actually have the disease? Most of us (includ-
ing most physicians, as has been shown in many studies), would guess that
the probability is very high, considering that the test is 80% accurate in de-
tecting the disease in a sick person. However, this turns out not to be the
case, and Bayes’ rule can help us overcome this lack of intuition, when it
comes to probability.

Let represent the event that you have the disease. Let represent the
event that you have a positive test result. We can then use Bayes’ rule to
find , which is the probability that you have the disease, given that
you have a positive test. We know that the prior probability would be
0.01, because 1% of the population have the disease. is 0.8, because
the test is 80% accurate in detecting the disease in people who have it. (No-
tice that this conditional probability is based on our knowledge of the test
procedure and its accuracy.) In order to use Bayes’ rule, we need one more
term, which is . This is the probability of getting a positive test,
whether or not you have the disease. This can be obtained by adding the
probability of having a positive test when you have the disease to the prob-
ability of having a positive test when you don’t have the disease:

, (13.6)

where we have used the definition of conditional probability:

, or . (13.7)

If we plug in our known probabilities into Eq. (13.6), we find

, (13.8)

where is 0.1, because 10% of health people register a positive test.
We can now use Bayes’ rule to find the posterior probability :

. (13.9)

This tells us that even if you get a positive test, you only have a 7.5% chance
of having the disease. For most of us, this result is not intuitive.

The key to Bayes’ rule is the prior probability . In this case, the prior
odds of having the disease were only 1 in 100. If this number had been
much higher, then our posterior probability would have also in-

2
2+

A B

P A B()
P A()

P B A()

P B()

P B() P A B∩() P A B∩()+ P B A()P A() P B A()P A()+= =

P B A() P A B∩()
P A()

-----------------------= P A B∩() P B A()P A()=

P B() 0.8 0.01× 0.1 0.99×+ 0.107= =

P B A()
P A B()

P A B() P B A()P A()
P B()

------------------------------- 0.8 0.01×
0.107

------------------------ 0.0748= = =

P A()

P A B()

13 Generalization

13-12

creased significantly. It is important when using Bayes’ rule to have the
prior probability accurately reflect our prior knowledge.

For another example of using Bayes’ rule and the effect of the prior density,
see Solved Problem P13.2 and its associated demonstration.

In the next section, we will apply Bayesian analysis to the training of mul-
tilayer networks. The advantage of Bayesian methods is that we can insert
prior knowledge through the selection of the prior probability. For neural
network training, we will make the prior assumption that the function we
are approximating is smooth. This means that the weights cannot be too
large, as was demonstrated in Figure 13.5. The trick will be to incorporate
this prior knowledge into an appropriate choice for the prior probability.

Bayesian Regularization
Although there have been many approaches to the automatic selection of
the regularization parameter, we will concentrate on one developed by
David MacKay [MacK92]. This approach puts the training of neural net-
works into a Bayesian statistical framework. This framework is useful for
many aspects of training, in addition to the selection of the regularization
parameter, so it is an important concept to become familiar with. There are
two levels to this Bayesian analysis. We will begin with Level I.

Level I Bayesian Framework

The Bayesian framework begins with the assumption that the network
weights are random variables. We then choose the weights that maximize
the conditional probability of the weights given the data. Bayes’ rule is
used to find this probability function:

, (13.10)

where is the vector containing all of the weights and biases in the net-
work, represents the training data set, and are parameters associ-
ated with the density functions and , and is the
selected model - the architecture of the network we have chosen (i.e., how
many layers and how may neurons in each layer).

It is worth taking some time to investigate each of the terms in Eq. (13.10).
First, is the probability density for the data, given a certain
set of weights , the parameter (which we will explain shortly), and the
choice of model . If we assume that the noise terms in Eq. (13.2) are in-
dependent and have a Gaussian distribution, then

, (13.11)

P A()

P x D α β M, , ,() P D x β M, ,()P x α M,()
P D α β M, ,()

---=

x
D α β

P D x β M, ,() P x α M,() M

P D x β M, ,()
x β

M

P D x β M, ,() 1
ZD β()
--------------- βED–()exp=

Methods for Improving Generalization

13-13

13
where , is the variance of each element of , is the
squared error (as defined in Eq. (13.3)), and

, (13.12)

where is , as in Eq. (12.34).

Eq. (13.11) is called the likelihood function. It is a function of the network
weights , and it describes how likely a given data set is to occur, given a
specific set of weights. The maximum likelihood method selects the weights
so as to maximize the likelihood function, which in this Gaussian case is
the same as minimizing the squared error . Therefore, our standard
sum squared error performance index can be derived statistically with the
assumption of Gaussian noise in the training set, and our standard choice
for the weights is the maximum likelihood estimate.

Now consider the second term on the right side of Eq. (13.10): .
This is called the prior density. It embodies our knowledge about the net-
work weights before we collect any data. Bayesian statistics allows us to in-
corporate prior knowledge through the prior density. For example, if we
assume that the weights are small values centered around zero, we might
select a zero-mean Gaussian prior density:

(13.13)

where , is the variance of each of the weights, is the
sum squared weights (as defined in Eq. (13.4)), and

, (13.14)

where is the number of weights and biases in the network, as in Eq.
(12.35).

The final term on the right side of Eq. (13.10) is . This is called
the evidence, and it is a normalizing term that is not a function of . If our
objective is to find the weights that maximize the posterior density

, then we do not need to be concerned with .
(However, it will be important later for estimating and .)

With the Gaussian assumptions that we made earlier, we can rewrite the
posterior density, using Eq. (13.10), in the following form:

β 1 2σε
2()⁄= σε

2 εq ED

ZD β() 2πσε
2()

N 2⁄
π β⁄()N 2⁄= =

N Q SM×

Likelihood Function
x

Maximum Likelihood

ED

P x α M,()
Prior Density

P x α M,() 1
ZW α()
---------------- αEW–()exp=

α 1 2σw
2()⁄= σw

2 EW

ZW α() 2πσw
2()

n 2⁄
π α⁄()n 2⁄= =

n

P D α β M, ,()
Evidence x

xPosterior Density
P x D α β M, , ,() P D α β M, ,()

α β

13 Generalization

13-14

(13.15)

where is a function of and (but not a function of), and
is our regularized performance index, which we defined in Eq. (13.4). To
find the most probable value for the weights, we should maximize the pos-
terior density . This is equivalent to minimizing the regu-
larized performance index .

Therefore, our regularized performance index can be derived using Baye-
sian statistics, with the assumption of Gaussian noise in the training set
and a Gaussian prior density for the network weights. We will identify the
weights that maximize the posterior density as , or most probable. This
is to be contrasted with the weights that maximize the likelihood function:

.

Note how this statistical framework provides a physical meaning for the
parameters and . The parameter is inversely proportional to the
variance in the measurement noise . Therefore, if the noise variance is
large, will be small, and the regularization ratio will be large. This
will force the resulting weights to be small and the network function to be
smooth (as seen in Figure 13.6). The larger the measurement noise, the
more we will smooth the network function, in order to average out the af-
fects of the noise.

The parameter is inversely proportional to the variance in the prior dis-
tribution for the network weights. If this variance is large, it means that
we have very little certainty about the values of the network weights, and,
therefore, they might be very large. The parameter will then be small,
and the regularization ratio will also be small. This will allow the net-
work weights to be large, and the network function will be allowed to have
more variation (as seen in Figure 13.6). The larger the variance in the prior
density for the network weights, the more variation the network function
will be allowed to have.

Level II Bayesian Framework

So far we have an interesting statistical derivation of the regularized per-
formance index and some new insight into the meanings of the parameters

 and , but what we really want to find is a way to estimate these param-
eters from the data. In order to do this, we need to take the Bayesian anal-
ysis to another level. If we want to estimate and using Bayesian
analysis, we need the probability density . Using Bayes’ rule
this can written

P x D α β M, , ,()

1
ZW α()
---------------- 1

ZD β()
--------------- βED αEW+()–()exp

Normalization Factor
---=

1
ZF α β,()
--------------------- F x()–()exp=

ZF α β,() α β x F x()

P x D α β M, , ,()
F x() βED αEW+=

xMPMost Probable

xML

α β β
εq

β α β⁄

α

α
α β⁄

α β

α β
P α β D M,,()

Methods for Improving Generalization

13-15

13
. (13.16)

This has the same format as Eq. (13.10), with the likelihood function and
the prior density in the numerator of the right hand side. If we assume a
uniform (constant) prior density for the regularization parame-
ters and , then maximizing the posterior is achieved by maximizing the
likelihood function . However, note that this likelihood func-
tion is the normalization factor (evidence) from Eq. (13.10). Since we have
assumed that all probabilities have a Gaussian form, we know the form for
the posterior density of Eq. (13.10). It is shown in Eq. (13.15). Now we can
solve Eq. (13.10) for the normalization factor (evidence).

(13.17)

Note that we know the constants and from Eq. (13.12) and
Eq. (13.14). The only part we do not know is . However, we can es-
timate it by using a Taylor series expansion.

Since the objective function has the shape of a quadratic in a small area
surrounding a minimum point, we can expand in a second order Tay-
lor series (see Eq. (8.9)) around its minimum point, , where the gradi-
ent is zero:

, (13.18)

where is the Hessian matrix of , and is the
Hessian evaluated at . We can now substitute this approximation into
the expression for the posterior density, Eq. (13.15):

, (13.19)

which can be rewritten as

P α β D M,,() P D α β M, ,()P α β M,()
P D M()

--=

P α β M,()
α β

P D α β M, ,()

P D α β M, ,()
P D x β M, ,()P x α M,()

P x D α β M, , ,()
--=

1
ZD β()
--------------- βED–()exp 1

ZW α()
---------------- αEW–()exp

1
ZF α β,()
--------------------- F x()–()exp

---=

ZF α β,()
ZD β()ZW α()

βED αEW––()exp
F x()–()exp

ZF α β,()

ZD β()ZW α()
-------------------------------=⋅=

ZD β() ZW α()
ZF α β,()

F x()
xMP

F x() F xMP() 1
2
--- x xMP–()T

HMP x xMP–()+≈

H β ED α EW∇2+∇2= F x() HMP

xMP

P x D α β M, , ,() 1
ZF
------ F xMP()–

1
2
--- x xMP–()T

HMP x xMP–()–exp≈

13 Generalization

13-16

. (13.20)

The standard form of the Gaussian density is

. (13.21)

Therefore, equating Eq. (13.21) with Eq. (13.20), we can solve for :

. (13.22)

Placing this result into Eq. (13.17), we can solve for the optimal values for
 and at the minimum point. We do this by taking the derivative with

respect to each of the log of Eq. (13.17) and set them equal to zero. This
yields (see Solved Problem P13.3):

 and , (13.23)

where is called the effective number of parameters,
and is the total number of parameters in the network. The term is a
measure of how many parameters (weights and biases) in the neural net-
work are effectively used in reducing the error function. It can range from
zero to . (See the example on page 13-23 for more analysis of .)

Bayesian Regularization Algorithm

The Bayesian optimization of the regularization parameters requires the
computation of the Hessian matrix of at the minimum point . We
propose using the Gauss-Newton approximation to the Hessian matrix
[FoHa97], which is readily available if the Levenberg-Marquardt optimiza-
tion algorithm is used to locate the minimum point (see Eq. (12.31)). The
additional computation required for optimization of the regularization is
minimal.

Here are the steps required for Bayesian optimization of the regularization
parameters, with the Gauss-Newton approximation to Hessian matrix:

0. Initialize , and the weights. The weights are initialized randomly,
and then and are computed. Set , and compute and
using Eq. (13.23).

1. Take one step of the Levenberg-Marquardt algorithm toward minimiz-
ing the objective function .

2. Compute the effective number of parameters , mak-

P x D α β M, , ,() 1
ZF
------exp F xMP()–()

⎩ ⎭
⎨ ⎬
⎧ ⎫ 1

2
--- x xMP–()T

HMP x xMP–()–exp≈

P x() 1

2π()n HMP()
1–

--exp 1
2
--- x xMP–()T

HMP x xMP–()–⎝ ⎠
⎛ ⎞=

ZF α β,()

ZF α β,() 2π()n 2⁄ det HMP()
1–

()()
1 2⁄

F xMP()–()exp≈

α β

αMP γ

2EW xMP()
-------------------------= βMP N γ–

2ED xMP()
-------------------------=

γ n 2αMPtr HMP()
1–

–=Effective # of Parameters
n γ

n γ

F x() xMP

α β
ED EW γ n= α β

F x() βED αEW+=

γ n 2αtr H() 1––=

Methods for Improving Generalization

13-17

13
ing use of the Gauss-Newton approximation to the Hessian available in
the Levenberg-Marquardt training algorithm:

, where is the Jacobian matrix of the
training set errors (see Eq. (12.37)).

3. Compute new estimates for the regularization parameters
 and .

4. Now iterate steps 1 through 3 until convergence.

Bear in mind that with each reestimate of the regularization parameters
 and the objective function changes; therefore, the minimum

point is moving. If traversing the performance surface generally moves to-
ward the next minimum point, then the new estimates for the regulariza-
tion parameters will be more precise. Eventually, the precision will be good
enough that the objective function will not significantly change in subse-
quent iterations. Thus, we will obtain convergence.

When this Gauss-Newton approximation to Bayesian regularization
(GNBR) algorithm is used, the best results are obtained if the training data
is first mapped into the range [-1,1] (or some similar region). We will dis-
cuss this preprocessing of the training data in Chapter 22.

In Figure 13.7 you can see the results of training a 1-20-1 network with
GNBR on the same data set represented in Figure 13.4 and Figure 13.6.
The network has fit the underlying function, without overfitting to the
noise. The fit looks similar to that obtained in Figure 13.6, with the regu-
larization ratio set to . In fact, at the completion of training
with GNBR, the final regularization ratio for this example was

.

The training process for this example is illustrated in Figure 13.8. In the
upper left of this figure, you see the squared error on the training set. No-
tice that it does not necessarily go down at each iteration. In the upper
right of the figure, you see the squared testing error. This was obtained by
comparing the network function to the true function at a number of points
between -1 and 1. It is a measure of the generalization capability of the net-
work. (This would not be possible in a practical case, where the true func-
tion was unknown.) Note that the testing error is at its minimum at the
completion of training.

H F x() 2βJTJ 2αIn+≈∇2= J

α γ
2EW x()
------------------= β N γ–

2ED x()
------------------=

α β F x()

GNBR

α β⁄ 0.01=

α β⁄ 0.0137=

13 Generalization

13-18

Figure 13.7 Bayesian Regularization Fit

Figure 13.8 also shows the regularization ratio and the effective num-
ber of parameters during training. These parameters have no particular
meaning during the training process, but at the completion of training they
are significant. As we mentioned earlier, the final regularization ratio was

, which is consistent with our earlier investigation of regular-
ization - illustrated in Figure 13.6. The final effective number of parame-
ters was . This is out of a total of 61 total weights and biases in the
network.

Figure 13.8 Bayesian Regularization Training Process

The fact that in this example the effective number of parameters is much
less than the total number of parameters (6 versus 61) means that we

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

1.5

α β⁄
γ

α β⁄ 0.0137=

γ 5.2=

10
0

10
1

10
2

10
3

10
−2

10
0

10
2

10
0

10
1

10
2

10
3

10
0

10
1

10
2

10
3

10
0

10
1

10
2

10
3

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
0

10
1

10
2

Training Testing

ED ED

α β⁄ γ

Iteration Iteration

Iteration Iteration

Methods for Improving Generalization

13-19

13
might well have been able to use a smaller network to fit this data. There
are two disadvantages of a large network: 1) it may overfit the data, and 2)
it requires more computation to calculate the network output. We have
overcome the first disadvantage by training with GNBR; although the net-
work has 61 parameters, it is equivalent to a network with only 6 parame-
ters. The second disadvantage is only important if the calculation time for
the network response is critical to the application. This is not usually the
case, since the time to calculate a network response to a particular input is
measured in milliseconds. In those cases where the calculation time is sig-
nificant, you can train a smaller network on the data.

On the other hand, when the effective number of parameters is close to the
total number of parameters, this can mean that the network is not large
enough to fit the data. In this case, you should increase the size of the net-
work and retrain on the data set.

To experiment with Bayesian Regularization, use the MATLAB® Neural
Network Design Demonstration Bayesian Regularization (nnd17breg).

Relationship Between Early Stopping and Regularization
We have discussed two techniques for improving network generalization:
early stopping and regularization. These two methods were developed in
very different ways, but they both improve generalization by restricting the
network weights and, therefore, producing a network with fewer effective
parameters. Early stopping restricts the network weights by stopping the
training before the weights have converged to the minimum of the squared
error. Regularization restricts the weights by adding a term to the squared
error that penalizes large weights. In this section we want to demonstrate,
using a linear example, an approximate equivalence of these two methods.
During the process, we will also shed some light on the meaning of the ef-
fective number of parameters, . This development is based on the more
general procedures described in [SjLj94].

Early Stopping Analysis

Consider the single layer linear network shown in Figure 10.1. We have
shown in Eq. (10.12) and Eq. (10.14) that the mean square error perfor-
mance function for this linear network is quadratic, of the form

, (13.24)

where is the Hessian matrix. In order to study the performance of early
stopping, we will analyze the evolution of the steepest descent algorithm on
this linear network. From Eq. (10.16), we know that the gradient of the per-
formance index is

. (13.25)

γ

F x() c dTx 1
2
---xTAx+ +=

A

∇F x() Ax d+=

13 Generalization

13-20

Therefore, the steepest descent algorithm (see Eq. (9.10)) will be

. (13.26)

We want to know how close we come to the minimum of the squared error
at each iteration. For quadratic performance indices, we know that the
minimum will occur at the following point (see Eq. (8.62)):

, (13.27)

where the superscript indicates that this result maximizes the likeli-
hood function, in addition to minimizing the squared error, as we saw in
Eq. (13.11).

We can now rewrite Eq. (13.26) as

. (13.28)

With some additional algebra we can find

, (13.29)

where . The next step is to relate to the initial guess .
Starting at the first iteration, using Eq. (13.29), we have

, (13.30)

where the initial guess usually consists of random values near zero.
Continuing to the second iteration:

. (13.31)

Following similar steps, at the kth iteration we have

, (13.32)

This key result shows how far we progress from the initial guess to the
maximum likelihood weights in k iterations. We will use this result later to
compare with regularization.

xk 1+ xk αgk– xk α Axk d+()–= =

xML A 1– d–=

ML

xk 1+ xk αA xk A 1– d+()– xk αA xk xML–()–= =

xk 1+ I αA–[]xk αAxML+ Mxk I M–[]xML+= =

M I αA–[]= xk 1+ x0

x1 Mx0 I M–[]xML+=

x0

x2 Mx1 I M–[]xML+=

M2x0 M I M–[]xML I M–[]xML+ +=

M2x0 MxML M2xML– xML MxML–+ +=

M2x0 xML M2xML–+ M2x0 I M– 2[]xML+= =

xk Mkx0 I Mk–[]xML+=

Methods for Improving Generalization

13-21

13
Regularization Analysis

Recall from Eq. (13.4) that the regularized performance index adds a pen-
alty term to the sum squared error, as in

. (13.33)

For the following analysis, it will more convenient to consider the following
equivalent (because the minimum occurs at the same place) performance
index

, (13.34)

which has only one regularization parameter.

The sum squared weight penalty term can be written

, (13.35)

where the nominal value is normally taken to be the zero vector.

In order to locate the minimum of the regularized performance index,
which is also the most probable value , we will set the gradient equal
to zero:

. (13.36)

The gradient of the penalty term, Eq. (13.35), is

. (13.37)

From Eq. (13.25) and Eq. (13.28), the gradient of the sum squared error is

. (13.38)

We can now set the total gradient to zero:

. (13.39)

The solution of Eq. (13.39) is the most probable value for the weights, .
We can make that substitution and perform some algebra to obtain

(13.40)

Now combine the terms multiplying :

F x() βED αEW+=

F∗ x() F x()
β

----------- ED
α
β
---E

W
+ ED ρEW+= = =

EW

EW x x0–()T x x0–()=

x0

xMP

F∗∇ x() E∇ D ρ EW∇+ 0= =

EW∇ 2 x x0–()=

E∇ D Ax d+ A x A 1– d+() A x xML–()= = =

F∗∇ x() A x xML–() 2ρ x x0–()+ 0= =

xMP

A xMP xML–() 2ρ xMP x0–()– 2ρ xMP xML xML+– x0–()–= =

2ρ xMP xML–()– 2ρ xML x0–()–=

xMP xML–()

13 Generalization

13-22

. (13.41)

Solving for , we find

, (13.42)

where .

We want to know the relationship between the regularized solution
and the minimum of the squared error , so we can solve Eq. (13.42) for

:

. (13.43)

This is the key result that describes the relationship between the regular-
ized solution and the minimum of the squared error. By comparing Eq.
(13.43) with Eq. (13.32), we can investigate the relationship between early
stopping and regularization. We will do that in the next section.

Connection Between Early Stopping and Regularization

To compare early stopping and regularization, we need to compare Eq.
(13.43) and Eq. (13.32). They are summarized in Figure 13.9. We would like
to find out when these two solutions are equal. In other words, when do ear-
ly stopping and regularization produce the same weights?

Figure 13.9 Early Stopping and Regularization Solutions

The key matrix for early stopping is . The key matrix for
regularization is . If these two matrices are equal, then
the weights for early stopping will be the same as the weights for regular-
ization. In Eq. (9.22) we showed that the eigenvectors of are the same
as the eigenvectors of and that the eigenvalues of are ,
where the eigenvalues of are . The eigenvalues of are then

. (13.44)

Now let’s consider the matrix . First, using the same procedures that
led to Eq. (9.22), we can show that the eigenvectors of are the
same as the eigenvectors of , and the eigenvalues of are

A 2ρI+() xMP xML–() 2ρ x0 xML–()=

xMP xML–()

xMP xML–() 2ρ A 2ρI+() 1– x0 xML–() Mρ x0 xML–()= =

Mρ 2ρ A 2ρI+() 1–=

xMP

xML

xMP

xMP Mρx0 I Mρ–[]xML+=

xMP Mρx0 I Mρ–[]xML+=xk Mkx0 I Mk–[]xML+=

M I αA–[]= Mρ 2ρ A 2ρI+() 1–=

Early Stopping Regularization

Mk I αA–[]k=
Mρ 2ρ A 2ρI+() 1–=

M
A M 1 αλi–()

A λi Mk

eig Mk() 1 αλi–()k=

Mρ
A 2ρI+()

A A 2ρI+()

Methods for Improving Generalization

13-23

13
. Also, the eigenvectors of the inverse of a matrix are the same as

the eigenvectors of the original matrix, and the eigenvalues of the inverse
are the reciprocals of the original eigenvalues. Therefore, the eigenvectors
of are the same as the eigenvectors of , and the eigenvalues of are

. (13.45)

Therefore, in order for to equal , they just need to have equal eigen-
values:

. (13.46)

Take the logarithm of both sides:

. (13.47)

These expressions are equal at , so they will always be equal if their
derivatives are equal. Taking derivatives of both sides, we have

, (13.48)

or

. (13.49)

If is small (slow, stable learning) and is small, then we have
the approximate result

. (13.50)

Therefore, early stopping is approximately equivalent to regularization. In-
creasing the number of iterations is approximately the same as decreas-
ing the regularization parameter .

Example, Interpretation of Effective Number of Parameters

We will illustrate this result with a simple example. Suppose that we have
a single layer, linear network with no bias. The input/target pairs are given
by

2ρ λi+()

Mρ A Mρ

eig Mρ() 2ρ
λi 2ρ+()

----------------------=

Mk Mρ

2ρ
λi 2ρ+()

---------------------- 1 αλi–()k=

1
λi

2ρ
------+⎝ ⎠

⎛ ⎞log– k 1 αλi–()log=

λi 0=

1

1
λi

2ρ
------+⎝ ⎠

⎛ ⎞
---------------------1

ρ
---–

k
1 αλi–
----------------- α–()=

αk 1
2ρ

1 αλi–()
1 λi 2ρ()⁄+()

----------------------------------=

αλi λi 2ρ()⁄

αk 1
2ρ
------≅

k
ρ

2
2+

13 Generalization

13-24

, ,

where the probability of the first pair is 0.75, and the probability of the sec-
ond pair is 0.25. Following Eq. (10.13) and Eq. (10.15), we can find the qua-
dratic mean square error performance index as

,

,

,

,

.

The minimum of the mean squared error occurs at

.

Now let’s investigate the eigensystem of the Hessian matrix of :

.

To find the eigenvalues:

,

.

To find the eigenvectors:

p1
1
1

= t1 1=,
⎩ ⎭
⎨ ⎬
⎧ ⎫

p2
1–

1
= t2 1–=,

⎩ ⎭
⎨ ⎬
⎧ ⎫

c E t2[] 1()2 0.75() 1–()2 0.25()+ 1= = =

h E tz[] 0.75() 1() 1
1

0.25() 1–() 1–

1
+= 1

0.5
= =

d 2h– 2–() 1
0.5

2–

1–
= = =

A 2R 2 E zzT[]() 2 0.75() 1
1

1 1 0.25 1–

1
1– 1+

⎝ ⎠
⎜ ⎟
⎛ ⎞ 2 1

1 2
= = = =

ED c xTd 1
2
---x

T
Ax+ +=

xML A– 1– d R 1– h 1 0.5
0.5 1

1–
1

0.5
1
0

= = = =

ED

∇2ED x() A 2R 2 1
1 2

= = =

A λI–
2 λ– 1

1 2 λ–
λ2 4λ– 3 λ 1–() λ 3–()=+= =

λ1 1 λ,= 2 3=

Methods for Improving Generalization

13-25

13
.

For ,

,

and for ,

.

The contour plot for is shown in Figure 13.10

Figure 13.10 Contour Plot for

Now consider the regularized performance index of Eq. (13.34). Its Hessian
matrix will be

.

In Figure 13.11 we have contour plots for as is equal to 0, 1 and .

A λI– v 0=

λ1 1=

1 1
1 1

v1 0 v1
1
1–

= =

λ2 3=

1– 1
1 1–

v2 0 v2
1
1

= =

ED

−0.5 0 0.5 1 1.5
−1

−0.5

0

0.5

1

x1

x2

ED

∇2F∗ x() E∇2
D ρ EW∇2+ E∇2

D 2ρI+ 2 1
1 2

ρ 2 0
0 2

+ 2 2ρ+ 1
1 2 2ρ+

= = = =

F ρ ∞

13 Generalization

13-26

Figure 13.11 Contour Plot for

In Figure 13.12 the blue curve represents the movement of as is var-
ied.

Figure 13.12 as is Varied

Now let’s compare this regularization result with early stopping. Figure
13.13 shows the steepest descent trajectory for minimizing , starting
from very small values for the weights. If we stop early, the result will fall
along the blue curve. Notice that this curve is very close to the regulariza-
tion curve in Figure 13.12. If the number of iterations is very small, this is
equivalent to a very large value for . As the number of iterations increas-
es, it is equivalent to reducing .

−0.5 0 0.5 1 1.5
−1

−0.5

0

0.5

1

ρ 0=
ρ 1=

ρ ∞=

x1

x2

F

xMP ρ

−0.5 0 0.5 1 1.5
−1

−0.5

0

0.5

1

x1

x2

ρ 0=ρ ∞=

xMP

xMP ρ

ED

ρ
ρ

Methods for Improving Generalization

13-27

13

Figure 13.13 Steepest Descent Trajectory

To experiment with the relationship between Early Stopping and Regular-
ization, use the MATLAB® Neural Network Design Demonstration Early
Stopping/Regularization (nnd17esr).

It is useful to consider the relationship between the eigenvalues and eigen-
vectors of the Hessian matrix and the results of regularization
and early stopping. In this example, is larger than , so has higher
curvature in the direction. This means that we will get a quicker reduc-
tion in the squared error if we move in that direction first. This is shown in
Figure 13.13, as the initial steepest descent movement is almost in the di-
rection of . Note also that in regularization, as shown in Figure 13.12, as

 decreases from a large value, the weights move first in the direction.
For a given change in the weights, this direction provides the largest reduc-
tion in the squared error.

Since the eigenvalue is smaller than , we only move in the direc-
tion after achieving significant reduction in in the direction. This
would be even more pronounced if the difference between and were
greater. In the limiting case, where , we would not have to move in
the direction at all. We would only need to move in the direction to
get the complete reduction in the squared error. (This would be the case of
the stationary valley, as in Figure 8.9.) Note that in this case we would only
be effectively using one parameter, even though the network has two
weights. (Of course, this one effective parameter is some combination of the
two weights.) Therefore, the effective number of parameters is related to
the number of eigenvalues of that are significantly different than
zero. We will analyze this in detail in the next section.

−0.5 0 0.5 1 1.5
−1

−0.5

0

0.5

1

x1

x2

∇2ED x()
λ2 λ1 ED

v2

v2
ρ v2

λ1 λ2 v1
ED v2

λ1 λ2
λ1 0=

v1 v2

∇2ED x()

13 Generalization

13-28

Effective Number of Parameters

Recall the previous definition for the effective number of parameters:

(13.51)

We can express this in terms of the eigenvalues of . First, we can
write the Hessian matrix as

. (13.52)

Using arguments similar to those leading to Eq. (13.44), we can show that
the eigenvalues of are . We can then use two properties of
eigenvalues to compute . First, the eigenvalues of are the re-
ciprocals of the eigenvalues of , and, second, the trace of a matrix is equal
to the sum of its eigenvalues. Using these two properties, we can write

. (13.53)

We can now write the effective number of parameters as

, (13.54)

or

, (13.55)

where

. (13.56)

Note that , so the effective number of parameters must fall be-
tween zero and n. If all of the eigenvalues of are large, then the
effective number of parameters will equal the total number of parameters.
If some of the eigenvalues are very small, then the effective number of pa-
rameters will equal the number of large eigenvalues, as was also demon-
strated by our example in the previous section.

γ n 2αMPtr HMP()
1–

{ }–=

∇2ED x()

H x() ∇2F x() β E∇2
D α EW∇2+ β E∇2

D 2αI+= = =

H x() βλi 2α+()
tr H 1–{ } H 1–

H

tr H 1–{ } 1
βλi 2α+

i 1=

n

∑=

γ n 2αMPtr HMP()
1–

{ }– n 2α
βλi 2α+

i 1=

n

∑–
βλi

βλi 2α+

i 1=

n

∑= = =

γ
βλi

βλi 2α+

i 1=

n

∑ γi

i 1=

n

∑= =

γi
βλi

βλi 2α+
---------------------=

0 γi 1≤ ≤ γ
∇2ED x()

Summary of Results

13-29

13
Summary of Results

Problem Statement
A network trained to generalize will perform as well in new situations as it
does on the data on which it was trained.

Methods for Improving Generalization

Estimating Generalization Error - The Test Set
Given a limited amount of available data, it is important to hold aside a cer-
tain subset during the training process. After the network has been
trained, we will compute the errors that the trained network makes on this
test set. The test set errors will then give us an indication of how the net-
work will perform in the future; they are a measure of the generalization
capability of the network.

Early Stopping
The available data (after removing the test set) is divided into two parts: a
training set and a validation set. The training set is used to compute gra-
dients or Jacobians and to determine the weight update at each iteration.
When the error on the validation set goes up for several iterations, the
training is stopped, and the weights that produced the minimum error on
the validation set are used as the final trained network weights.

Regularization

Bayesian Regularization

Level I Bayesian Framework

ED tq aq–()T tq aq–()
q 1=

Q

∑=

F x() βED αEW+ β tq aq–()T tq aq–()
q 1=

Q

∑ α xi
2

i 1=

n

∑+= =

P x D α β M, , ,() P D x β M, ,()P x α M,()
P D α β M, ,()

---=

13 Generalization

13-30

,

,

Level II Bayesian Framework

 and

Bayesian Regularization Algorithm

0. Initialize , and the weights. The weights are initialized randomly,
and then and are computed. Set , and compute and
using Eq. (13.23).

1. Take one step of the Levenberg-Marquardt algorithm toward minimiz-
ing the objective function .

2. Compute the effective number of parameters , mak-
ing use of the Gauss-Newton approximation to the Hessian available in
the Levenberg-Marquardt training algorithm:

, where is the Jacobian matrix of the
training set errors (see Eq. (12.37)).

3. Compute new estimates for the regularization parameters
 and .

4. Now iterate steps 1 through 3 until convergence.

P D x β M, ,() 1
ZD β()
--------------- βED–()exp= β 1 2σε

2()⁄=

ZD β() 2πσε
2()

N 2⁄
π β⁄()N 2⁄= =

P x α M,() 1
ZW α()
---------------- αEW–()exp= α 1 2σw

2()⁄=

ZW α() 2πσw
2()

n 2⁄
π α⁄()n 2⁄= =

P x D α β M, , ,() 1
ZF α β,()
--------------------- F x()–()exp=

P α β D M,,() P D α β M, ,()P α β M,()
P D M()

--=

αMP γ

2EW xMP()
-------------------------= βMP N γ–

2ED xMP()
-------------------------=

γ n 2αMPtr HMP()
1–

–=

α β
ED EW γ n= α β

F x() βED αEW+=

γ N 2αtr H() 1––=

H F x() 2βJTJ 2αIn+≈∇2= J

α γ
2EW x()
------------------= β N γ–

2ED x()
------------------=

Summary of Results

13-31

13
Relationship Between Early Stopping and Regularization

Effective Number of Parameters

xMP Mρx0 I Mρ–[]xML+=xk Mkx0 I Mk–[]xML+=

M I αA–[]= Mρ 2ρ A 2ρI+() 1–=

Early Stopping Regularization

eig Mk() 1 αλi–()k=

eig Mρ() 2ρ
λi 2ρ+()

----------------------=

αk 1
2ρ
------≅

γ
βλi

βλi 2α+

i 1=

n

∑=

0 γ n≤ ≤

13 Generalization

13-32

Solved Problems

P13.1 In this problem and in the following one we want to investigate the
relationship between maximum likelihood methods and Bayesian
methods. Suppose that we have a random variable that is uniform-
ly distributed between 0 and x. We take a series of Q independent
samples of the random variable. Find the maximum likelihood es-
timate of x.

Before we begin this problem, let’s review the Level I Bayesian formulation
of Eq. (13.10). We will not need the Level II formulation for this simple
problem, so we do not need the regularization parameters. Also, we only
have a single parameter to estimate, so x is a scalar. Eq. (13.10) can then
be simplified to

.

We are interested in the maximum likelihood estimate for this problem, so
we need to find the value of x that maximizes the likelihood term .
The data is the Q independent samples from the uniformly distributed ran-
dom variable. A graph of the uniform density function is given in Figure
P13.1.

Figure P13.1 Uniform Density Function

The definition can be written

P x D() P D x()P x()
P D()

------------------------------=

P D x()

x

1
x

f t x()

t

Solved Problems

13-33

13
.

If we have Q independent samples of the random variable, then we can
multiply each of the individual probabilities to get the joint probability of
all samples:

The plot of the resulting likelihood function is shown in Figure P13.1.

Figure P13.2 Likelihood Function for Solved Problem P13.1

From this plot, we can see that the value of that maximizes the likelihood
function is

.

Therefore, the maximum likelihood estimate of is the maximum value
obtained from the Q independent samples of the random variable. This
seems like a reasonable estimate of , which is the upper limit of the ran-
dom variable.

P13.2 In this problem we will compare the maximum likelihood and
Bayesian estimators. Assume that we have a series of measure-
ments of a random signal in noise:

f t x()
1
x
--- 0 t x≤ ≤,

0 elsewhere,⎩
⎪
⎨
⎪
⎧

=

P D x() f ti x()
i 1=

Q

∏
1
xQ
----- 0 ti x≤ ≤ for all i, ,

0 elsewhere,⎩
⎪
⎨
⎪
⎧ 1

xQ
----- x max ti()≥,

0 x max ti()<,⎩
⎪
⎨
⎪
⎧

= = =

x

P D x()

max ti()

x

xML max ti()=

x

x

13 Generalization

13-34

.

Assume that the noise has a Gaussian density, with zero mean:

i. Find the maximum likelihood estimate of .

Assume that is a zero-mean random variable, with Gaussian pri-
or density:

ii. Find the most probable estimate of .

i. To find the maximum likelihood estimate, we need to find the likelihood
function . This represents the density of the data, given . The first
step is to use the noise density to find the density of the measurement.
Since, with given, the density for the measurement would be the same as
the density for the noise, but with a mean of , we have

.

Assuming that the measurement noises are independent, we can multiply
the probability densities:

where

, , .

To maximize the likelihood, we should minimize . Setting the derivative
to zero, we find

ti x εi+=

f εi() 1
2πσ

εi

2

2σ2
---------–

⎝ ⎠
⎜ ⎟
⎛ ⎞

exp=

x

x

f x() 1
2πσx

---------------- x2

2σx
2

-----------–
⎝ ⎠
⎜ ⎟
⎛ ⎞

exp 1
ZW α()
---------------- αEW–()exp= =

x

P D x() x

x
x

f ti x() 1
2πσ

ti x–()2

2σ2
------------------–

⎝ ⎠
⎜ ⎟
⎛ ⎞

exp=

P D x() f t1 t2 … tQ x, , ,() f t1 x()f t2 x()…f tQ x() P D x()= = =

1
2π()Q 2⁄ σQ

ti x–()2

i 1=

Q

∑

2σ2
---------------------------–

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

exp 1
Z β()
----------- βED–()exp= =

β 1
2σ2
---------= ED ti x–()2

i 1=

Q

∑ ei
2

i 1=

Q

∑= = Z β() π β⁄()Q 2⁄=

ED

Solved Problems

13-35

13
.

Solving for , we find the maximum likelihood estimate:

ii. To find the most probable estimate, we need to use Bayes’ rule (Eq.
(13.10)) to find the posterior density:

.

The likelihood function was found above to be

The prior density is

,

where

, , .

The posterior density can then be computed as

To find the most probable value for x, we maximize the posterior density.
This is equivalent to minimizing

xd

dED

xd
d ti x–()2

i 1=

Q

∑ 2– ti x–()
i 1=

Q

∑ 2 ti

i 1=

Q

∑⎝ ⎠
⎜ ⎟
⎛ ⎞

Qx–– 0= = = =

x

xML 1
Q
---- ti

i 1=

Q

∑=

P x D() P D x()P x()
P D()

------------------------------=

P D x()

P D x() 1
Z β()
----------- βED–()exp=

P x() f x() 1
2πσx

---------------- x2

2σx
2

-----------–
⎝ ⎠
⎜ ⎟
⎛ ⎞

exp 1
ZW α()
---------------- αEW–()exp= = =

α 1
2σx

2
-----------= ZW α() π α⁄()1 2⁄= EW x2=

P x D() f x t1 t2 … tQ, , ,()=

f t1 t2 … tQ, , , x()f x()
f t1 t2 … tQ, , ,()

---=

1
ZD β()
--------------- 1

ZW α()
---------------- βED αEW+()–()exp

Normalization Factor
---=

13 Generalization

13-36

.

To find the minimum, we take the derivative with respect to and set it
equal to zero:

Solving for , we obtain

Notice that as goes to zero (variance goes to infinity), approach-
es . Increasing the variance of the prior density represents uncertainty
in our prior knowledge about x. With large prior uncertainty, we rely on the
data for our estimate of x.

Figure P13.3 illustrates , and for the case where
, , and . Here the variance associated with the

measurement is smaller than the variance associated with our prior densi-
ty for , so is closer to than it is to the maximum of the
prior density, which occurs at 0.

To experiment with this signal in noise example, use the MATLAB® Neural
Network Design Demonstration Signal Plus Noise (nnd17spn).

βED αEW+ β ti x–()2

i 1=

Q

∑ αx2+=

x

xd
d βED αEW+()

xd
d β ti x–()2

i 1=

Q

∑ αx2+
⎝ ⎠
⎜ ⎟
⎛ ⎞

2β– ti x–()
i 1=

Q

∑ 2αx+= =

2β ti

i 1=

Q

∑⎝ ⎠
⎜ ⎟
⎛ ⎞

Qx–– 2αx+=

2– β ti

i 1=

Q

∑⎝ ⎠
⎜ ⎟
⎛ ⎞

α Qβ+()x– 0= =

µ

xMP

β ti

i 1=

Q

∑⎝ ⎠
⎜ ⎟
⎛ ⎞

α Qβ+
---------------------=

α σx
2 xMP

xML

P D x() P x() P x D()
σx

2 2= σ2 1= Q 1= t1 1=

x xMP xML t1 1= =

Solved Problems

13-37

13

Figure P13.3 Prior and Posterior Density Functions

P13.3 Derive Eq. (13.23).

To solve for and , we will take the derivatives of the log of
, given in Eq. (13.17), with respect to and , and set the de-

rivatives to zero. Taking the log of Eq. (13.17), and substituting Eq. (13.12),
Eq. (13.14) and Eq. (13.22), we obtain

We will consider first the second term in this expression. Since is the
Hessian of in Eq. (13.4), we can write it as

, where . If we let
be an eigenvalue of and be an eigenvalue of , then
for all corresponding eigenvalues. Now we take the derivative of the second
term in the above equation with respect to . Since the determinant of a
matrix can be expressed as the product of its eigenvalues, we can reduce it
as shown below, where is the trace of the inverse of the Hessian .

−3 −2 −1 0 1 2 3

0

0.2

0.4

0.6

P D x()

P x D()

P x()

xMP

αMP βMP

P D α β M, ,() α β

P D α β M, ,()log log ZF() log ZD β()()– log ZW α()()–=

n
2
---log 2π() 1

2
---logdet HMP()– F xMP()–

N
2
---- π

β
---⎝ ⎠
⎛ ⎞ n

2
--- π

α
---⎝ ⎠
⎛ ⎞log–log–=

F xMP()–
1
2
--- det HMP() N

2
---- β()log n

2
--- α() n

2
--- 2 N

2
---- πlog–log+log+ +log–=

H
F

H F βED()∇2= αEW()∇2+∇2 βB 2αI+= = B ED∇2= λh

H λb βB λh λb 2α+=

α

tr H 1–() H

13 Generalization

13-38

Next, we will take the derivative of the same term with respect to . First,
define the parameter , as shown below, and expand it for use in our next
step. The parameter is referred to as the effective number of parameters.

Now take the derivative of with respect to .

α∂
∂ 1

2
--- detlog H 1

2detH

α∂
∂ λh

k 1=

n

∏⎝ ⎠
⎜ ⎟
⎛ ⎞

=

1
2detH

α∂
∂ λi

b 2α+()
i 1=

n

∏⎝ ⎠
⎜ ⎟
⎛ ⎞

=

1
2detH
---------------- λj

b 2α+()
j i≠
∏⎝ ⎠
⎛ ⎞

α∂
∂ λi

b 2α+()
i 1=

n

∑=

λj
b 2α+()

j i≠
∏⎝ ⎠
⎛ ⎞

i 1=

n

∑

λi
b 2α+()

i 1=

n

∏

--=

1
λi

b 2α+
------------------- tr H 1–

()=

i 1=

n

∑=

β
γ
γ

γ n 2αtr H 1–
()–≡

n 2α 1
λi

b 2α+

i 1=

N

∑–= 1 2α
λi

b 2α+
-------------------–

⎝ ⎠
⎜ ⎟
⎛ ⎞

i 1=

n

∑
λi

b

λi
b 2α+

⎝ ⎠
⎜ ⎟
⎛ ⎞

i 1=

n

∑
λi

b

λi
h

i 1=

n

∑= = =

1
2
--- det HMP()log β

Solved Problems

13-39

13

where the fourth step is derived from the fact that is an eigenvalue of
, and therefore the derivative of with respect to is just the eigen-

value of which is .

Now we are finally ready to take the derivatives of all terms in
 and set them equal to zero. The derivative with respect to

 will be

Rearranging terms, and using our definition of , we have

β∂
∂ 1

2
--- detHlog 1

2detH

β∂
∂ λk

h

k 1=

n

∏⎝ ⎠
⎜ ⎟
⎛ ⎞

=

1
2detH

β∂
∂ λi

b 2α+()
i 1=

n

∏⎝ ⎠
⎜ ⎟
⎛ ⎞

=

1
2detH
---------------- λj

b 2α+()
j i≠
∏⎝ ⎠
⎛ ⎞

β∂
∂ λi

b 2α+()
i 1=

n

∑=

1
2

λj
b 2α+()

λi
b

β
-----⎝ ⎠
⎛ ⎞

j i≠
∏⎝ ⎠
⎜ ⎟
⎛ ⎞

i 1=

n

∑

λi
b 2α+()

i 1=

n

∏

---=

1
2β

λi
b

λi
b 2α+

i 1=

n

∑= γ
2β
------=

λi
b

βB λi
b β

B λi
b β⁄

P D α β M, ,()log
α

α∂
∂ P D α β M, ,()log

α∂
∂ F wMP

()
α∂
∂ 1

2
---logdet HMP

()
α∂
∂ n

2
---logα+––=

α∂
∂ αEW wMP

()() tr HMP
()

1– n
2αMP
-------------+––=

EW wMP
()– tr HMP

()
1–

– n
2αMP
------------- 0=+=

γ

EW wMP
() n

2αMP
------------- tr HMP

()
1–

–=

2αMPEW wMP
() n 2αMPtr HMP

()
1–

γ=–=

αMP γ

2EW wMP
()

---------------------------=

13 Generalization

13-40

We now repeat the process for .

Rearranging terms,

P13.4 Demonstrate that extrapolation can occur in a region that is sur-
rounded by training data.

Consider the function displayed in Figure 13.3. In that example, extrapo-
lation occurred in the upper left region of the input space, because all of the
training data was in the lower right. Let’s provide training data around the
outside of the input space, but without data in the region

.

The training data is distributed as shown in Figure P13.4.

Figure P13.4 Training Data Locations

β

β∂
∂ P D α β M, ,()log

β∂
∂ F wMP

()
β∂
∂ 1

2
---logdet HMP

()
β∂
∂ N

2
----logβ+––=

β∂
∂ βED wMP

()() γ

2βMP
------------ N

2βMP
------------+––=

ED wMP
()– γ

2βMP
------------– N

2βMP
------------ 0=+=

ED wMP
() N

2βMP
------------ γ

2βMP
------------–=

βMP N γ–

2ED wMP
()

--------------------------=

1.5– p1 1.5< < 1.5– p2 1.5< <

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

Solved Problems

13-41

13
The result of the training is shown in Figure P13.5. The neural network ap-
proximation significantly overestimates the true function in the region
without training data, even though surrounded by regions with training
data. In addition, this result is random. With a different set of initial ran-
dom weights, the network might underestimate the true function in this re-
gion. Extrapolation occurs because there is a significantly large region
without training data. When the input space is of high dimension, it can be
very difficult to tell when a network is extrapolating. It cannot be done by
simply checking the individual ranges of each input variable.

Figure P13.5 Function (a) and Neural Network Approximation (b)

P13.5 Consider the example starting on page 13-23. Find the effective
number of parameters if .

To find the effective number of parameters, we can use Eq. (13.55):

.

We earlier found the eigenvalues to be , . The regularization
parameter is

.

We can rewrite in terms of as follows

.

−3
−2

−1
0

1
2

3

−3

−2

−1

0

1

2

3

−6

−4

−2

0

2

4

6

8

−3
−2

−1
0

1
2

3

−3

−2

−1

0

1

2

3

−6

−4

−2

0

2

4

6

8

p1 p1
p2 p2

t

a) b)

a

ρ 1=

γ
βλi

βλi 2α+

i 1=

n

∑=

λ1 1= λ2 3=

ρ α
β
--- 1= =

γ ρ

γ
βλi

βλi 2α+

i 1=

n

∑
λi

λi 2α
β
---+

i 1=

n

∑
λi

λi 2ρ+

i 1=

n

∑= = =

13 Generalization

13-42

Substituting our numbers, we find

.

Therefore, we are using approximately one of the two available parame-
ters. The network has two parameters: and . The parameter we
are using is not one of these two, but rather a combination. As we can see
from Figure 13.11, we move in the direction of the second eigenvector:

,

which means that we are changing and by the same amount. Al-
though there are two parameters, we are effectively using only one. Since

 is the eigenvector with the largest eigenvalue, we move in that direction
to obtain the greatest reduction in the squared error.

P13.6 Demonstrate overfitting with polynomials. Consider fitting a poly-
nomial

to a set of data so as to minimize the fol-
lowing squared error performance function.

First, we want to express the problem in matrix form. Define the following
vectors.

We can then write the performance index as follows.

γ
λi

λi 2ρ+

i 1=

n

∑ 1
1 2+
------------ 3

3 2+
------------+ 1

3
--- 3

5
---+ 14

15
------= = = =

w1 1, w1 2,

v2
1
1

=

w1 1, w1 2,

v2

gk p() x0 x1p x2p2 … xkpk+ + + +=

p1 t1{ , } p2 t2{ , } … pQ tQ{ , }, , ,

F x() tq gk pq()–()2

q 1=

Q

∑=

t

t1

t2

tQ

= …

G

1 p1 … p1
k

1 p2 … p2
k

1 pQ … pQ
k

= … … … x

x0

x1

xk

= …

F x() t Gx–[]T t Gx–[] tTt 2xTGTt– xTGTGx+= =

Solved Problems

13-43

13
To locate the minimum, we take the gradient and set it equal to zero.

Solving for the weights, we obtain the least squares solution (maximum
likelihood for the Gaussian noise case).

To demonstrate the operation of the polynomial fitting, we will use the sim-
ple linear function . To create the data set, we will sample the func-
tion at five different points and will add noise as follows

, ,

where has a uniform density with range . The code below
shows how to generate the data and fit a 4th order polynomial. The results
of fitting 2nd and 4th order polynomials are shown in Figure P13.6. The 4th
order polynomial has five parameters, which allow it to exactly fit the five
noisy data points, but it doesn’t produce an accurate approximation of the
true function.

p = -1:.5:1;
t = p + 0.5*(rand(size(p))-0.5);
Q = length(p);
ord = 4;
G = ones(Q,1);
for i=1:ord,
 G = [G (p').^i];
end
x = (G'*G)\G'*t'; % Could also use x = G\t';

Figure P13.6 Polynomial Approximations to a Straight Line

F x()∇ 2GTt– 2GTGx+ 0= =

GTG[]xML GTt= ⇒ xML GTG[]
1–
GTt=

t p=

ti pi εi+= p 1– 0.5– 0 0.5 1, , , ,{ }=

εi 0.25– 0.25,[]

» 2 + 2

ans =
 4

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

1.5

Function
Data
2nd Order
4th Order

13 Generalization

13-44

Epilogue

The focus of this chapter has been the development of algorithms for
training multilayer neural networks so that they generalize well. A
network that generalizes well will perform as well in new situations as it
performs on the data for which it was trained.

The basic approach to producing networks that generalize well is to find
the simplest network that can represent the data. A simple network is one
that has a small number of weights and biases.

The two methods that we presented in this chapter, early stopping and reg-
ularization, produce simple networks by constraining the weights, rather
than by reducing the number of weights. We showed in this chapter that
constraining the weights is equivalent to reducing the number of weights.

Further Reading

13-45

13
Further Reading

[AmMu97] S. Amari, N. Murata, K.-R. Muller, M. Finke, and H. H.
Yang, “Asymptotic Statistical Theory of Overtraining and
Cross-Validation,” IEEE Transactions on Neural Net-
works, vol. 8, no. 5, 1997.

When using early stopping, it is important to decide on the
number of data points to place in the validation set. This
paper provides a theoretical basis for the choice of valida-
tion set size.

[FoHa97] D. Foresee and M. Hagan, “Gauss-Newton Approximation
to Bayesian Learning,” Proceedings of the 1997 Interna-
tional Joint Conference on Neural Networks, vol. 3, pp.
1930 - 1935, 1997.

This paper describes a method for implementing Bayesian
regularization by using the Gauss-Newton approximation
to the Hessian matrix.

[GoLa98] C. Goutte and J. Larsen, “Adaptive Regularization of Neu-
ral Networks Using Conjugate Gradient,” Proceedings of
the IEEE International Conference on Acoustics, Speech
and Signal Processing, vol. 2, pp. 1201-1204, 1998.

When using regularization, the important step is setting
the regularization parameter. This paper describes a proce-
dure for setting the regularization parameter to minimize
the validation set error.

[MacK92] D. J. C. MacKay, “Bayesian Interpolation,” Neural Compu-
tation, vol. 4, pp. 415-447, 1992.

Bayesian approaches have been used for many years in sta-
tistics. This paper presents one of the first developments of
a Bayesian framework for training neural networks.
MacKay followed this paper with many others describing
refinements of the approach.

[Sarle95] W. S. Sarle, “Stopped training and other remedies for over-
fitting,” In Proceedings of the 27th Symposium on Interface,
1995.

This is one of the early papers on the use of early stopping
with a validation set to prevent overfitting. The paper de-
scribes simulation results comparing early stopping with
other methods for improving generalization.

13 Generalization

13-46

[SjLj94] J. Sjoberg and L. Ljung, “Overtraining, regularization and
searching for minimum with application to neural net-
works,” Linkoping University, Sweden, Tech. Rep. LiTH-
ISY-R-1567, 1994.

This report explains how early stopping and regularization
are approximately equivalent processes. It demonstrates
that the number of iterations of training is inversely pro-
portional to the regularization parameter.

[Tikh63] A. N. Tikhonov, “The solution of ill-posed problems and the
regularization method,” Dokl. Acad. Nauk USSR, vol. 151,
no. 3, pp. 501-504, 1963.

Regularization is a method by which a squared error per-
formance index is augmented by a penalty on the complex-
ity of the approximating function. This is the original paper
that introduced the concept of regularization. The penalty
involved the derivatives of the approximating function.

[WaVe94] C. Wang, S. S. Venkatesh, and J. S. Judd, “Optimal Stop-
ping and Effective Machine Complexity in Learning,” Ad-
vances in Neural Information Processing Systems, J. D.
Cowan, G. Tesauro, and J. Alspector, Eds., vol. 6, pp. 303-
310, 1994.

This paper describes how the effective number of network
parameters changes during the training process and how
the generalization capability of the network can be im-
proved by stopping the training early.

Exercises

13-47

13
Exercises

E13.1 Consider fitting a polynomial (kth order)

to a set of data . It has been proposed that min-
imizing a performance index that penalizes the derivatives of the polyno-
mial will provide improved generalization. Investigate the relationship
between this technique and regularization using squared weights.

i. Derive the least squares solution for the weights , which minimiz-
es the following squared error performance index. (See Solved Prob-
lem P13.6.)

ii. Derive the regularized least squares solution, with a squared
weight penalty.

iii. Derive a solution for the weights that minimizes a sum of the
squared error plus a sum of squared derivatives.

iv. Derive a solution for the weights that minimizes a sum of the
squared error plus a sum of squared second derivatives.

E13.2 Write a MATLAB program to implement the solutions you found in E13.1
i. through iv. Using the following data points, adjust the values to obtain
the best results. Use for all cases. Plot the data points, the noise-free
function () and the polynomial approximation in each case. Compare
the four approximations. Which do you think produces the best results?
Which cases produce similar results?

gk p() x0 x1p x2p2 … xkpk+ + + +=

p1 t1{ , } p2 t2{ , } … pQ tQ{ , }, , ,

xi

F x() tq gk pq()–()2

q 1=

Q

∑=

F x() tq gk pq()–()2

q 1=

Q

∑ ρ xi
2

i 1=

n

∑+=

F x() tq gk pq()–()2

q 1=

Q

∑ ρ
pd

d gk pq()
2

i 1=

Q

∑+=

F x() tq gk pq()–()2

q 1=

Q

∑ ρ
p2

2

d

d gk pq()
2

i 1=

Q

∑+=

ρ
» 2 + 2

ans =
 4

k 8=
t p=

13 Generalization

13-48

, ,

where has a uniform density with range (use the randn com-
mand in MATLAB).

E13.3 Investigate the extrapolation characteristics of neural networks and poly-
nomials. Consider the problem described in E11.11, where a sine wave is
fit over the range . Select 11 training points evenly spaced over
this interval.

i. After fitting the 1-2-1 neural network over this range, plot the actu-
al sine function and the neural network approximation over the
range .

ii. Fit a fifth-order polynomial (which has the same number of free pa-
rameters as the 1-2-1 network) to the sine wave over the range

 (using your results from E13.1 i.). Plot the actual function
and the polynomial approximation over the range .

iii. Discuss the extrapolation characteristics of the neural network and
the polynomial.

E13.4 Suppose that we have a random variable that is distributed according to
the following density function. We take a series of Q independent samples
of the random variable. Find the maximum likelihood estimate of - .

E13.5 For the random variable given in E13.4, suppose that is a random vari-
able with the following prior density function. Find the most probable esti-
mate of - .

E13.6 Repeat E13.5 for the following prior density function. Under what condi-
tions will ?

E13.7 In the signal plus noise example given in Solved Problem P13.2, find
for the following prior density functions.

i.

ti pi εi+= p 1– 0.5– 0 0.5 1, , , ,{ }=

εi 0.1– 0.1,[]

2– p 2≤ ≤

» 2 + 2

ans =
 4

4– p 4≤ ≤

2– p 2≤ ≤
4– p 4≤ ≤

t

x xML

f t x() t
x2
---- t

x
--–⎝ ⎠

⎛ ⎞exp= t 0≥

x

x xMP

f x() x–()exp= x 0≥

xMP xML=

f x() 1
2πσx

x µx–()2

2σx
2

---------------------–
⎝ ⎠
⎜ ⎟
⎛ ⎞

exp=

xMP

f x() x–()exp= x 0≥

Exercises

13-49

13
ii.

E13.8 Suppose that the prior density in the level I Bayesian analysis (see page 13-
12) has nonzero mean, . Find the new performance index.

E13.9 Repeat E11.11, but modify your program to use early stopping and to use
30 neurons. Select 10 training points and 5 validation points. Add noise to
the validation and testing points that is uniformly distributed between

and (using the MATLAB function rand). Measure the mean square
error of the trained network on a testing set consisting of 20 equally-spaced
points of the noise-free function. Try 10 different random sets of training
and validation data. Compare the results with early-stopping with the re-
sults without early stopping.

E13.10 Repeat E13.9, but use regularization instead of early stopping. This will re-
quire modifying your program to compute the gradient of the regularized
performance index. Add the standard gradient of the squared error, which
is computed by the standard backpropagation algorithm, to the gradient of

 times the squared weights. Try three different values of . Compare
these results with the early stopping results.

E13.11 Consider again the problem described in E10.4

i. Find the regularized performance index for . Sketch the
contour plot in each case. Indicate the location of the optimal
weights in each case.

ii. Find the effective number of parameters for .

iii. Starting with zero initial weights, approximately how many itera-
tions of the steepest descent algorithm would need to be made on the
mean square performance index to produce results that would be
equivalent to minimizing the regularized performance index with

? Assume a learning rate of .

iv. Write a MATLAB M-file to implement the steepest descent algo-
rithm to minimize the mean square error performance index that
you found in part i. (This is a quadratic function.) Start the algo-
rithm with zero initial conditions, and use a learning rate of

. Sketch the trajectory on a contour plot of the mean square
error (the contour plot was found in E10.4). Verify that at the itera-
tion you computed in part iii., the weights are close to the same val-
ues you found to minimize the regularized performance index with

 in part i.

f x() 1
2
--- x µ––()exp=

µx

» 2 + 2

ans =
 4 0.1– 0.1

» 2 + 2

ans =
 4

ρ ρ

ρ 0 1 ∞, ,=

ρ 0 1 ∞, ,=

ρ 1= α 0.01=
» 2 + 2

ans =
 4

α 0.01=

ρ 1=

13 Generalization

13-50

