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Objectives

 

Think of this chapter as a preview of coming attractions. We will take a 
simple pattern recognition problem and show how it can be solved using 
three different neural network architectures. It will be an opportunity to 
see how the architectures described in the previous chapter can be used to 
solve a practical (although extremely oversimplified) problem. Do not ex-
pect to completely understand these three networks after reading this 
chapter. We present them simply to give you a taste of what can be done 
with neural networks, and to demonstrate that there are many different 
types of networks that can be used to solve a given problem.

The three networks presented in this chapter are representative of the 
types of networks discussed in the remaining chapters: feedforward net-
works (represented here by the perceptron), competitive networks (repre-
sented here by the Hamming network) and recurrent associative memory 
networks (represented here by the Hopfield network).
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Theory and Examples

 

Problem Statement

 

A produce dealer has a warehouse that stores a variety of fruits and vege-
tables. When fruit is brought to the warehouse, various types of fruit may 
be mixed together. The dealer wants a machine that will sort the fruit ac-
cording to type. There is a conveyer belt on which the fruit is loaded. This 
conveyer passes through a set of sensors, which measure three properties 
of the fruit: 

 

shape

 

, 

 

texture

 

 and 

 

weight

 

. These sensors are somewhat primi-
tive. The shape sensor will output a 1 if the fruit is approximately round 
and a  if it is more elliptical. The texture sensor will output a 1 if the sur-
face of the fruit is smooth and a  if it is rough. The weight sensor will 
output a 1 if the fruit is more than one pound and a  if it is less than one 
pound.

The three sensor outputs will then be input to a neural network. The pur-
pose of the network is to decide which kind of fruit is on the conveyor, so 
that the fruit can be directed to the correct storage bin. To make the prob-
lem even simpler, letÕs assume that there are only two kinds of fruit on the 
conveyor: apples and oranges. 

As each fruit passes through the sensors it can be represented by a three-
dimensional vector. The first element of the vector will represent shape, 
the second element will represent texture and the third element will repre-
sent weight:

1–
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1–
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. (3.1)

Therefore, a prototype orange would be represented by

, (3.2)

and a prototype apple would be represented by

. (3.3)

The neural network will receive one three-dimensional input vector for 
each fruit on the conveyer and must make a decision as to whether the fruit 
is an 

 

orange

 

  or an 

 

apple

 

 . 

Now that we have defined this simple (trivial?) pattern recognition prob-
lem, letÕs look briefly at three different neural networks that could be used 
to solve it. The simplicity of our problem will facilitate our understanding 
of the operation of the networks.

 

Perceptron

 

The first network we will discuss is the perceptron. Figure 3.1 illustrates a 
single-layer perceptron with a symmetric hard limit transfer function 

 

hard-
lims

 

.

Figure 3.1   Single-Layer Perceptron
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Two-Input Case

 

Before we use the perceptron to solve the orange and apple recognition 
problem (which will require a three-input perceptron, i.e., ), it is use-
ful to investigate the capabilities of a two-input/single-neuron perceptron 
( ), which can be easily analyzed graphically. The two-input percep-
tron is shown in Figure 3.2.

Figure 3.2  Two-Input/Single-Neuron Perceptron

Single-neuron perceptrons can classify input vectors into two categories. 
For example, for a two-input perceptron, if  and  then

. (3.4)

Therefore, if the inner product of the weight matrix (a single row vector in 
this case) with the input vector is greater than or equal to , the output 
will be 1. If the inner product of the weight vector and the input is less than 

, the output will be . This divides the input space into two parts. Fig-
ure 3.3 illustrates this for the case where . The blue line in the fig-
ure represents all points for which the net input  is equal to 0:

 . (3.5)

Notice that this decision boundary will always be orthogonal to the weight 
matrix, and the position of the boundary can be shifted by changing . (In 
the general case,  is a matrix consisting of a number of row vectors, each 
of which will be used in an equation like Eq. (3.5). There will be one bound-
ary for each row of . See Chapter 4 for more on this topic.) The shaded 
region contains all input vectors for which the output of the network will 
be 1. The output will be  for all other input vectors.
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Figure 3.3   Perceptron Decision Boundary

The key property of the single-neuron perceptron, therefore, is that it can 
separate input vectors into two categories. The decision boundary between 
the categories is determined by the equation

. (3.6)

Because the boundary must be linear, the single-layer perceptron can only 
be used to recognize patterns that are linearly separable (can be separated 
by a linear boundary). These concepts will be discussed in more detail in 
Chapter 4.

 

Pattern Recognition Example

 

Now consider the apple and orange pattern recognition problem. Because 
there are only two categories, we can use a single-neuron perceptron. The 
vector inputs are three-dimensional ( ), therefore the perceptron 
equation will be

. (3.7)

We want to choose the bias  and the elements of the weight matrix so that 
the perceptron will be able to distinguish between apples and oranges. For 
example, we may want the output of the perceptron to be 1 when an apple 
is input and  when an orange is input. Using the concept illustrated in 
Figure 3.3, letÕs find a linear boundary that can separate oranges and ap-

W 1
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ples. The two prototype vectors (recall Eq. (3.2) and Eq. (3.3)) are shown in 
Figure 3.4. From this figure we can see that the linear boundary that di-
vides these two vectors symmetrically is the 

 

 

 

plane.

Figure 3.4   Prototype Vectors

The  plane, which will be our decision boundary, can be described by 
the equation

, (3.8)

or

. (3.9)

Therefore the weight matrix and bias will be

, . (3.10)

The weight matrix is orthogonal to the decision boundary and points to-
ward the region that contains the prototype pattern  (

 

apple

 

) for which we 
want the perceptron to produce an output of 1. The bias is 0 because the 
decision boundary passes through the origin.

Now letÕs test the operation of our perceptron pattern classifier. It classifies 
perfect apples and oranges correctly since
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Orange

 

:

, (3.11)

 

Apple

 

:

. (3.12)

But what happens if we put a not-so-perfect orange into the classifier? LetÕs 
say that an orange with an elliptical shape is passed through the sensors. 
The input vector would then be

. (3.13)

The response of the network would be

. (3.14)

In fact, any input vector that is closer to the orange prototype vector than 
to the apple prototype vector (in Euclidean distance) will be classified as an 
orange (and vice versa).

 

To experiment with the perceptron network and the apple/orange classifi-
cation problem, use the Neural Network Design Demonstration 

 

Perceptron 
Classification 

 

(

 

nnd3pc

 

)

 

.

 

This example has demonstrated some of the features of the perceptron net-
work, but by no means have we exhausted our investigation of perceptrons. 
This network, and variations on it, will be examined in Chapters 4 through 
12. LetÕs consider some of these future topics.

In the apple/orange example we were able to design a network graphically, 
by choosing a decision boundary that clearly separated the patterns. What 
about practical problems, with high dimensional input spaces? In Chapters 
4, 7, 10 and 11 we will introduce learning algorithms that can be used to 
train networks to solve complex problems by using a set of examples of 
proper network behavior.
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The key characteristic of the single-layer perceptron is that it creates lin-
ear decision boundaries to separate categories of input vector. What if we 
have categories that cannot be separated by linear boundaries? This ques-
tion will be addressed in Chapter 11, where we will introduce the multilay-
er perceptron. The multilayer networks are able to solve classification 
problems of arbitrary complexity.

 

Hamming Network

 

The next network we will consider is the Hamming network [Lipp87]. It 
was designed explicitly to solve binary pattern recognition problems 
(where each element of the input vector has only two possible values Ñ in 
our example 1 or ). This is an interesting network, because it uses both 
feedforward and recurrent (feedback) layers, which were both described in 
Chapter 2. Figure 3.5 shows the standard Hamming network. Note that 
the number of neurons in the first layer is the same as the number of neu-
rons in the second layer.

The objective of the Hamming network is to decide which prototype vector 
is closest to the input vector. This decision is indicated by the output of the 
recurrent layer. There is one neuron in the recurrent layer for each proto-
type pattern. When the recurrent layer converges, there will be only one 
neuron with nonzero output. This neuron indicates the prototype pattern 
that is closest to the input vector. Now letÕs investigate the two layers of the 
Hamming network in detail.

Figure 3.5   Hamming Network

 

Feedforward Layer
The feedforward layer performs a correlation, or inner product, between 
each of the prototype patterns and the input pattern (as we will see in Eq. 
(3.17)). In order for the feedforward layer to perform this correlation, the 
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rows of the weight matrix in the feedforward layer, represented by the con-
nection matrix , are set to the prototype patterns. For our apple and or-
ange example this would mean

. (3.15)

The feedforward layer uses a linear transfer function, and each element of 
the bias vector is equal to , where  is the number of elements in the in-
put vector. For our example the bias vector would be

. (3.16)

With these choices for the weight matrix and bias vector, the output of the 
feedforward layer is

. (3.17)

Note that the outputs of the feedforward layer are equal to the inner prod-
ucts of each prototype pattern with the input, plus . For two vectors of 
equal length (norm), their inner product will be largest when the vectors 
point in the same direction, and will be smallest when they point in oppo-
site directions. (We will discuss this concept in more depth in Chapters 5, 
8 and 9.) By adding  to the inner product we guarantee that the outputs 
of the feedforward layer can never be negative. This is required for proper 
operation of the recurrent layer.

This network is called the Hamming network because the neuron in the 
feedforward layer with the largest output will correspond to the prototype 
pattern that is closest in Hamming distance to the input pattern. (The 
Hamming distance between two vectors is equal to the number of elements 
that are different. It is defined only for binary vectors.) We leave it to the 
reader to show that the outputs of the feedforward layer are equal to  
minus twice the Hamming distances from the prototype patterns to the in-
put pattern.

Recurrent Layer
The recurrent layer of the Hamming network is what is known as a Òcom-
petitiveÓ layer. The neurons in this layer are initialized with the outputs of 
the feedforward layer, which indicate the correlation between the proto-
type patterns and the input vector. Then the neurons compete with each 
other to determine a winner. After the competition, only one neuron will 
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have a nonzero output. The winning neuron indicates which category of in-
put was presented to the network (for our example the two categories are 
apples and oranges). The equations that describe the competition are:

     (Initial Condition), (3.18)

and

. (3.19)

(DonÕt forget that the superscripts here indicate the layer number, not a 
power of 2.) The  transfer function is linear for positive values and 
zero for negative values. The weight matrix W2 has the form

, (3.20)

where  is some number less than , and  is the number of neu-
rons in the recurrent layer. (Can you show why  must be less than 

?)

An iteration of the recurrent layer proceeds as follows:

. (3.21)

Each element is reduced by the same fraction of the other. The larger ele-
ment will be reduced by less, and the smaller element will be reduced by 
more, therefore the difference between large and small will be increased. 
The effect of the recurrent layer is to zero out all neuron outputs, except the 
one with the largest initial value (which corresponds to the prototype pat-
tern that is closest in Hamming distance to the input).

To illustrate the operation of the Hamming network, consider again the ob-
long orange that we used to test the perceptron:

. (3.22)

The output of the feedforward layer will be
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, (3.23)

which will then become the initial condition for the recurrent layer.

The weight matrix for the recurrent layer will be given by Eq. (3.20) with 
 (any number less than 1 would work). The first iteration of the re-

current layer produces

. (3.24)

The second iteration produces

. (3.25)

Since the outputs of successive iterations produce the same result, the net-
work has converged. Prototype pattern number one, the orange, is chosen 
as the correct match, since neuron number one has the only nonzero out-
put. (Recall that the first element of  was .) This is the correct 
choice, since the Hamming distance from the orange prototype to the input 
pattern is 1, and the Hamming distance from the apple prototype to the in-
put pattern is 2.

To experiment with the Hamming network and the apple/orange classifica-
tion problem, use the Neural Network Design Demonstration Hamming 
Classification (nnd3hamc ).

There are a number of networks whose operation is based on the same prin-
ciples as the Hamming network; that is, where an inner product operation 
(feedforward layer) is followed by a competitive dynamic layer. These com-
petitive networks will be discussed in Chapters 13 through 16. They are 
self-organizing networks, which can learn to adjust their prototype vectors 
based on the inputs that have been presented.
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Hopfield Network
The final network we will discuss in this brief preview is the Hopfield net-
work. This is a recurrent network that is similar in some respects to the re-
current layer of the Hamming network, but which can effectively perform 
the operations of both layers of the Hamming network. A diagram of the 
Hopfield network is shown in Figure 3.6. (This figure is actually a slight 
variation of the standard Hopfield network. We use this variation because 
it is somewhat simpler to describe and yet demonstrates the basic con-
cepts.)

The neurons in this network are initialized with the input vector, then the 
network iterates until the output converges. When the network is operat-
ing correctly, the resulting output should be one of the prototype vectors. 
Therefore, whereas in the Hamming network the nonzero neuron indicates 
which prototype pattern is chosen, the Hopfield network actually produces 
the selected prototype pattern at its output.

Figure 3.6   Hopfield Network

The equations that describe the network operation are

(3.26)

and

, (3.27)

where  is the transfer function that is linear in the range [- 1, 1] and 
saturates at 1 for inputs greater than 1 and at - 1 for inputs less than - 1.

The design of the weight matrix and the bias vector for the Hopfield net-
work is a more complex procedure than it is for the Hamming network, 
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where the weights in the feedforward layer are the prototype patterns. 
Hopfield design procedures will be discussed in detail in Chapter 18. 

To illustrate the operation of the network, we have determined a weight 
matrix and a bias vector that can solve our orange and apple pattern rec-
ognition problem. They are given in Eq. (3.28).

(3.28)

Although the procedure for computing the weights and biases for the 
Hopfield network is beyond the scope of this chapter, we can say a few 
things about why the parameters in Eq. (3.28) work for the apple and or-
ange example.

We want the network output to converge to either the orange pattern, , 
or the apple pattern, . In both patterns, the first element is , and the 
third element is . The difference between the patterns occurs in the sec-
ond element. Therefore, no matter what pattern is input to the network, we 
want the first element of the output pattern to converge to , the third el-
ement to converge to , and the second element to go to either  or , 
whichever is closer to the second element of the input vector.

The equations of operation of the Hopfield network, using the parameters 
given in Eq. (3.28), are

(3.29)

Regardless of the initial values, , the first element will be increased 
until it saturates at , and the third element will be decreased until it sat-
urates at . The second element is multiplied by a number larger than . 
Therefore, if it is initially negative, it will eventually saturate at ; if it is 
initially positive it will saturate at . 

(It should be noted that this is not the only  pair that could be used. 
You might want to try some others. See if you can discover what makes 
these work.)

LetÕs again take our oblong orange to test the Hopfield network. The out-
puts of the Hopfield network for the first three iterations would be
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, , , (3.30)

The network has converged to the orange pattern, as did both the Hamming 
network and the perceptron, although each network operated in a different 
way. The perceptron had a single output, which could take on values of - 1 
(orange) or 1 (apple). In the Hamming network the single nonzero neuron in-
dicated which prototype pattern had the closest match. If the first neuron 
was nonzero, that indicated orange, and if the second neuron was nonzero, 
that indicated apple. In the Hopfield network the prototype pattern itself 
appears at the output of the network.

To experiment with the Hopfield network and the apple/orange classifica-
tion problem, use the Neural Network Design Demonstration Hopfield Clas-
sification (nnd3hopc ).

As with the other networks demonstrated in this chapter, do not expect to 
feel completely comfortable with the Hopfield network at this point. There 
are a number of questions that we have not discussed. For example, ÒHow 
do we know that the network will eventually converge?Ó It is possible for 
recurrent networks to oscillate or to have chaotic behavior. In addition, we 
have not discussed general procedures for designing the weight matrix and 
the bias vector. These topics will be discussed in detail in Chapters 17 and 
18. 
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Epilogue

The three networks that we have introduced in this chapter demonstrate 
many of the characteristics that are found in the architectures which are 
discussed throughout this book. 

Feedforward networks, of which the perceptron is one example, are pre-
sented in Chapters 4, 7, 11 and 12. In these networks, the output is com-
puted directly from the input in one pass; no feedback is involved. 
Feedforward networks are used for pattern recognition, as in the apple and 
orange example, and also for function approximation (see Chapter 11). 
Function approximation applications are found in such areas as adaptive 
filtering (see Chapter 10) and automatic control.

Competitive networks, represented here by the Hamming network, are 
characterized by two properties. First, they compute some measure of dis-
tance between stored prototype patterns and the input pattern. Second, 
they perform a competition to determine which neuron represents the pro-
totype pattern closest to the input. In the competitive networks that are 
discussed in Chapters 14Ð16, the prototype patterns are adjusted as new 
inputs are applied to the network. These adaptive networks learn to cluster 
the inputs into different categories.

Recurrent networks, like the Hopfield network, were originally inspired by 
statistical mechanics. They have been used as associative memories, in 
which stored data is recalled by association with input data, rather than by 
an address. They have also been used to solve a variety of optimization 
problems. We will discuss these recurrent networks in Chapters 17 and 18.

We hope this chapter has piqued your curiosity about the capabilities of 
neural networks and has raised some questions. A few of the questions we 
will answer in later chapters are:

1. How do we determine the weight matrix and bias for perceptron net-
works with many inputs, where it is impossible to visualize the deci-
sion boundary? (Chapters 4 and 10)

2. If the categories to be recognized are not linearly separable, can we ex-
tend the standard perceptron to solve the problem? (Chapters 11 and 
12)

3. Can we learn the weights and biases of the Hamming network when we 
donÕt know the prototype patterns? (Chapters 14Ð16)

4. How do we determine the weight matrix and bias vector for the 
Hopfield network? (Chapter 18)

5. How do we know that the Hopfield network will eventually converge? 
(Chapters 17 and 18)
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Exercise

E3.1 In this chapter we have designed three different neural networks to distin-
guish between apples and oranges, based on three sensor measurements 
(shape, texture and weight). Suppose that we want to distinguish between 
bananas and pineapples:

 (Banana)

 (Pineapple)

i. Design a perceptron to recognize these patterns.

ii. Design a Hamming network to recognize these patterns.

iii. Design a Hopfield network to recognize these patterns.

iv. Test the operation of your networks by applying several different in-
put patterns. Discuss the advantages and disadvantages of each 
network.
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