686

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 20, NO. 4, APRIL 2009

Spurious Valleys in the Error Surface of Recurrent
Networks Analysis and Avoidance

Jason Horn, Member, IEEE, Orlando De Jeses, Member, IEEE, and Martin T. Hagan, Member, IEEE

Abstract—This paper gives a detailed analysis of the error sur-
faces of certain recurrent networks and explains some difficulties
encountered in training recurrent networks. We show that these
error surfaces contain many spurious valleys, and we analyze the
mechanisms that cause the valleys to appear. We demonstrate that
the principle mechanism can be understood through the analysis
of the roots of random polynomials. This paper also provides sug-
gestions for improvements in batch training procedures that can
help avoid the difficulties caused by spurious valleys, thereby im-
proving training speed and reliability.

Index Terms—Backpropagation, error surface, recurrent neural
networks, spurious minima, spurious valleys, training.

. INTRODUCTION

ECURRENT neural networks have been applied success-

fully in the identi cation and control of dynamic systems
[18], prediction in nancial markets [32], channel equalization
in communication systems [12], phase detection in power sys-
tems [27], sorting [24], fault detection [6], speech recognition
[13], [16], [31], handwriting recognition [17], learning of gram-
mars in natural languages [29], and even the prediction of pro-
tein structure in genetics [14]. However, even though these net-
works have been widely used, the dif culty of recurrent net-
work training has limited their widespread application [3], [9],
[20] [22].

One of the dif culties in training recurrent networks is the
existence of spurious local minima in the error surface. It has
been known for many years that even the error surfaces of mul-
tilayer feedforward networks can have local minima. Sontag and
Sussman [33] showed that even networks without hidden layers
can have such spurious minima. They considered pattern recog-
nition problems, in which sigmoid transfer functions were used.
Bianchini et al. [5] discussed the problem of local minima in
recurrent neural networks. They restricted their analysis to the
case of recurrent networks used for recognition of frames. The

Manuscript received March 21, 2008; revised July 16, 2008 and October 06,
2008; accepted November 10, 2008. First published March 06, 2009; current
version published April 03, 2009.

J. Horn is with the Agilent Technologies High Frequency Technology Center,
Santa Clara, CA 95051 USA (e-mail: jason@jasonhorn.com).

O. De Jeses is with the Research Department, Halliburton Energy Services,
Dallas, TX 75006 USA (e-mail: Orlando.DeJesus@Halliburton.com).

M. T. Hagan is with the School of Electrical and Computer Engineering,
Oklahoma State University, Stillwater, OK 74078 USA (e-mail: mhagan@ok-
state.edu).

Color versions of one or more of the gures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identi er 10.1109/TNN.2008.2012257

networks that they considered also used sigmoid transfer func-
tions. Their analysis showed how the network architecture and
the learning environment both contributed to the complexity of
the error surface. They showed that if the network architecture
and the learning environment satisfy certain recurrent network
assumptions, then the error surface contains no local minima.
However, these conditions for optimal learning are only suf-

cient, and satisfying the criteria may require networks with
large input size based on the unfolding in time of the neural
network. More recently, Gori and Sperduti [15] developed suf -
cient conditions which guarantee the absence of local minima of
the error function in the case of learning directed acyclic graphs
with recursive (related to recurrent) neural networks. They de-
veloped a method for designing a neural architecture with a
local-minima-free error function for a given data set. As in pre-
vious work, their networks used sigmoid transfer functions and
performed pattern recognition tasks.

There have been other approaches to recurrent network
training that involve selecting the initial weights so that the
chance of falling into a local minimum is minimized. For
example, Wang and Chen [38] describe an automated pro-
cedure that combines minimal model determination, weight
initialization, and performance optimization. This technique
is designed for a speci ¢ network architecture that is used for
dynamic system identi cation. Huang et al. [23] discuss the
problem of local minima in recurrent networks and propose
an ef cient structure and parameter learning algorithm for
the Jordan network. A key step in their procedure is a good
initial guess for the network weights. Xiao et al. [39] propose
a two-stage training process. In the rst stage, particle swarm
optimization is used to locate an initial guess that will speed
network convergence. In the second stage, a backpropagation
algorithm is used to train the network to convergence. All of
these papers use weight initialization to attempt to avoid local
minima in recurrent network error surfaces, but they do not
explain why the minima occur.

This paper will focus on recurrent networks that are used for
system identi cation, control, Itering, prediction, and related
tasks, which involve sequence processing and produce contin-
uous outputs. The concepts discussed here apply to arbitrary
recurrent network architectures, although we will fully inves-
tigate only simple networks. We will demonstrate that the error
surfaces of recurrent networks have spurious valleys, which can
disrupt in a signi cant way the training of recurrent networks.
We suggest a newly discovered mechanism that can explain, at
least in part, the cause of spurious valleys in the error surfaces
of recurrent networks. We show that this mechanism can even
produce spurious valleys in a simple recurrent network with a

1045-9227/$25.00 = 2009 IEEE

Authorized licensed use limited to: Oklahoma State University. Downloaded on May 14, 2009 at 16:58 from |IEEE Xplore. Restrictions apply.

HORN et al.: SPURIOUS VALLEYS IN THE ERROR SURFACE OF RECURRENT NETWORKS ANALYSIS AND AVOIDANCE 687

w IS

Sum Squared Error
O

-2 -1

0 1 2
Distance Along Search Direction

Fig. 1. Error pro le.

linear transfer function and a single neuron. To our knowledge,
this has not been previously reported in the literature. Based on
our analysis of this mechanism, we will also propose modi ed
training procedures that can provide improved convergence. We
will demonstrate the operation of these modi ed training proce-
dures on two simple recurrent networks.

Il. PRELUDE

We begin with a description of how we encountered spurious
valleys in the error surfaces of recurrent networks. While
training a neural-network-based model reference controller
[10], we found that the error sometimes increased during
training, although a line search minimization was being ex-
ecuted at each iteration. In order to understand the failure
of the line search, we plotted the error surface along the
search direction. A typical pro le is shown in Fig. 1. For the
system shown, we have 65 weights being trained. The surface
we present is along the direction of search [obtained by the
Broyden Fletcher Goldfarb Shanno (BFGS) quasi-Newton
algorithm] through a 65-dimensional space. It is clear from
this pro le that any standard line search, using a combination
of interpolation and sectioning, will have great dif culty in
locating the minimum along the search direction. There are
many local minima contained in very narrow valleys. (Some of
the valleys were found to have widths on the order of 10719.) In
addition, the bottom of the valleys are often cusps. (The neural
network function is continuous and in nitely differentiable,
so theoretically no cusps can exist. In practice, however, the
valleys are so narrow that they appear as cusps on the domain
of double-precision numbers, and therefore, they are effectively
cusps for most training and analysis purposes.) We normally
assume that the minimum will occur at the point where the
derivative is zero. However, for some of these valleys, the
derivative continues to increase as we approach the minimum.
Even if our line search were to locate the minimum, it is not
clear that the minimum represents an optimal weight location.
In fact, in the remainder of this paper, we will demonstrate that
spurious minima are introduced into the error surface due to
characteristics of the input sequence.

In order to understand how spurious valleys can appear in the
error surface, we analyzed the surfaces for some very simple
recurrent networks. The idea was to nd the simplest network
that would produce the valleys. In the next section, we discuss a

Inputs Linear Neuron

4 N/ A

p()

AN J _ J
a(t) = w,p(t)+w,a(t-1)

Fig. 2. First-order linear recurrent network.

rst-order linear recurrent network that produces spurious val-
leys. This is followed, in Section IV, with a theoretical anal-
ysis of the mechanism that causes the valleys. In Section V, we
will show how adding nonlinear transfer functions can affect
the shape of existing spurious valleys and generate new valleys.
This is followed in Section VI by some modi cations we pro-
pose to improve the training process, based on our analysis of
the creation of the spurious valleys. Section VII of the paper
tests the proposed modi cations on rst- and second-order re-
current networks. In the last section, we give a summary of the
results.

1. FIRST-ORDER LINEAR RECURRENT NETWORK

Fig. 2 illustrates the simplest possible recurrent network. As
we will see, even this network produces spurious valleys similar
to those shown in Fig. 1.

In order to generate an error surface, we rst develop training
data using the network of Fig. 2, where the weights are set to
wy; = 0.5 and wy = 0.5. We use a Gaussian white noise input
sequence with mean zero and variance one for p(¢), and then use
the network to generate a sequence of outputs a(t). (When using
recurrent networks to model dynamic systems, it is a common
practice to use random, or pseudorandom, input sequences to
generate the training data.) Our training objective is then to train
another network with the same architecture to t the training
data. The global minimum of the error surface (sum square error
over the training data) should occur at the values w; = 0.5 and
w9 = 0.5.

The left-hand side of Fig. 3 is a typical error surface obtained
using the above procedure for one particular input sequence and
the initial output a(0) = 0. The right-hand side of Fig. 3 indi-
cates where the valleys occur. Although this network architec-
ture is simple, the error surfaces generated by these networks
have spurious valleys similar to those encountered in more com-
plicated networks.

There are several interesting features of the surface. First, the
error surface generally increases dramatically as the weight w-
becomes larger than 1 in magnitude. This is to be expected, since
the network is unstable for these weight values. What is unex-
pected are the two valleys that run through the surface. Even
though the network is unstable for |wy| > 1, for this particular
input sequence, there are some values for ws in the unstable
range that produce small network outputs (and, therefore, rela-
tively small errors). We expect the output to grow without bound
under these conditions, but this does not always happen.

Authorized licensed use limited to: Oklahoma State University. Downloaded on May 14, 2009 at 16:58 from |IEEE Xplore. Restrictions apply.

688

Fig. 3. Error surface (log scale) and valleys for rst-order linear network.

Sum Square Error
:

Fig. 4. Sum square error cross sections for

The two valleys in the error surface occur for two different
reasons. One valley occurs along the line w; = 0. If this weight
is zero, and the initial condition is zero, the output of the network
will remain zero, no matter what value is used for w,. Therefore,
our mean squared error will be constant and equal to the mean
square value of the target outputs.

The second, and more interesting, valley in the error surface
is due to the input sequence that is presented to the network. For
a given input p(k), the system output will be

a (k) =wip (k) + waa(k—1). 1)

If we accumulate the responses starting from some initial con-
dition a(0) up to time k£ > 0, we obtain

a(1)=wip (1) + waa (0) = wip (1)
a(2)=wip(2) +wea (1)
a(2)=w1p (2) + wewyp (1) + wo2a (0)

a(k)=wi{p (k)+wp (k—1)+-- 4wy (1)}—|—w2ka(0).
(2

Here we can see that the response at time & is a polynomial
in the parameter wo. (It will be a polynomial of degree k& — 1, if
the initial condition is zero.) The coef cients of the polynomial
involve the input sequence and the initial condition. We obtain

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 20, NO. 4, APRIL 2009

Log Sum Square Error

for different values of sequence length .

the second valley because this polynomial contains a root out-
side the unit circle. There is some value of w- that is larger than
1 in magnitude for which the output a(k) is almost zero.

Of course, having a single output close to zero would not pro-
duce a valley in the error surface. However, we discovered that
once the polynomial shown in (2) has a root outside the unit
circle at time &, that same root also appears in the next polyno-
mial at time k& + 1, and therefore, the output will remain small
for all future times for the same weight value. The theoretical
mechanism for the frozen root will be analyzed in Section IV.

Fig. 4 shows a cross section of the error surface presented in
Fig. 3 for wy; = 0.5 using different sequence lengths. The error
falls abruptly near —3.8239. That is the root of the polynomial
described in (2). The root maintains its location as the sequence
increases in length (& increases). This causes the valley in the
error surface.

To summarize, there are two mechanisms that create the spu-
rious valleys. The rst mechanism has to do with the initial con-
ditions. If some initial conditions are zero, then there are certain
combinations of weights that will produce zero outputs for all
time. (This effect is more complex in larger networks, as we will
see in Section VII.) The second mechanism has to do with the
input sequence. There are values for the weights that produce
an unstable network, but for which the output remains small for
a particular input sequence. If the input sequence is modi ed, it
will produce a valley in a different location.

Authorized licensed use limited to: Oklahoma State University. Downloaded on May 14, 2009 at 16:58 from |IEEE Xplore. Restrictions apply.

HORN et al.: SPURIOUS VALLEYS IN THE ERROR SURFACE OF RECURRENT NETWORKS ANALYSIS AND AVOIDANCE 689

Jr(r350)

Fig. 5. Density of real roots of a random polynomial of degree 50.

L L L L L L L L L
0 10 20 30 40 50 60 70 80 90 100
k

Fig. 6. Expected number of real roots of a RGP as a function of .

Comprehensive prediction of valleys for this rst-order linear
recurrent network is relatively simple since only two types of
valleys are encountered. We predict a valley where w, is equal
to zero, and we predict a valley where ws is equal to a real root
of the polynomial that has the input sequence as its coef cients.
If the value of the root is not greater than one (producing an
unstable system), then the output will not be signi cantly higher
for values on either side of the root than for values at the root,
so the valley will not occur.

In the following section, we will investigate the theoretical
mechanisms for the spurious valley caused by the root of the
polynomial in (2) outside the unit circle.

IV. RooTS OF RANDOM POLYNOMIALS

One of the keys to the locations of the spurious valleys in the
error surface of recurrent networks are the roots of polynomials,
as in (2). In this section, we will investigate these polynomial
roots in more detail. First, assume that we have a polynomial in
the following form [4], [25]:

g(w;k):co+01w+-~-+0kwkzzciwi~ ®)

Imaginary Part
=)
o

% 1 0 1 2
Real Part

Fig. 7. Distribution of roots of a 500th-order RGP.

We will analyze such polynomials where the coef cients are
independent random variables that have a Gaussian distribution
with mean zero and variance one. We will call these polynomials
random Gaussian polynomials (RGP). The general patterns that
we will demonstrate are not extremely sensitive to the exact dis-
tribution of the coef cients, but the Gaussian assumption allows
a clear development.

We are especially interested in the roots of RGPs that are real
and that fall outside the unit circle. In that case, for the poly-
nomial in (2), the network output will be zero for some feed-
back gain that is greater than one in magnitude, which would
normally produce a large output. There are several things that
we can say about the real roots of (3). First, the probability of
getting a real root in the interval [1, co] is the same as the prob-
ability of getting a real root in the interval [0, 1]. This is because
the polynomial with a root at r can be converted to a polynomial
with aroot at w = 1/r by reversing the order of the coef cients.
Under our previous assumptions, these two polynomials would
have equal probability of occurrence. In addition, the probability
of getting a positive real root will be equal to the probability of
obtaining a negative real root. This is because the polynomial
with a root at w = r can be converted to a polynomial with a
root at w = —r by changing the signs of the coef cients at odd
powers of w. To summarize, the real roots of a RGP are equally
likely to fall in any of the following four intervals: [—oo, —1],
[—1,0], [0,1], and [1, oco]. This means that half of the real roots
of a RGP are likely to fall outside the unit circle.

Kac [26] derived the density for the real zeros of the RGP in

@)
l 1 _ (k + 1)2T2k ,
fr(r;k) = ™ \/(7«2 _ 1)2 (r2k+2 — 1)27 # +1
% k<k1;_2) r==l1.
(4)

This is plotted in Fig. 5 for the case where £k = 50. This
function should be divided by the area under the curve to obtain
the conditional probability function for a root, given that it is
real.

In addition to knowing the probable locations of the real roots
of RGPs, we would also like to know how many of the roots will

Authorized licensed use limited to: Oklahoma State University. Downloaded on May 14, 2009 at 16:58 from |IEEE Xplore. Restrictions apply.

690

2
1 o
.
S .
>
§ 0 ° ° o °
2
g e
.
-1 e ®
=2 i
-2 -1 0 1 2 3
Real Part
2
1 e . ¢0. 0
) L
Y L]
E ® e
>
§ 0 v' ¢ ‘0 °
R=i . °
&0 .
g L .
= ° o
*]
-1 o ®g o
=D . L . .
=2 -1 0 1 2 3
Real Part

Fig. 8. Movement of roots as order is increased

be real. The expected number of real roots can be obtained from
the integral of (4) over the real line. This is shown in Fig. 6 as
k varies from 1 to 100.

As can be seen from Fig. 6, the number of real roots is small.
Kac [25] showed that the number of real roots goes up as the log
of the order of the polynomial, as is seen in the following strict
upper bound:

;log(k)+-%§. ()

The number of real roots goes up fairly rapidly as the order
is initially increased, but then the rate of increase diminishes
quickly. This means that you are likely to have a few real roots,
even if the order of the polynomial is small, but the number of
real roots does not increase signi cantly as the order increases.

For the RGP roots that are not real, Bharucha-Reid [4] has
shown that they are distributed near the unit circle. This can be
seen in Fig. 7, which shows the roots of a 500th-order RGP. We
can see that most of the roots are complex, and are heavily con-
centrated near the unit circle. There are several real roots, and
one is located well outside the unit circle, near 2. Note that the
distribution of (4) and Fig. 5 has heavy tails (decays slower than
the exponential distribution), which means that there is a signif-
icant probability of having roots well outside the unit circle.

Note that in our recurrent network response of (2) the order
of the polynomial increases with time. We have found through
numerous experiments that if a real root of the polynomial falls
well outside the unit circle (e.g., with a magnitude of 2), then

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 20, NO. 4, APRIL 2009

2 T ™ v
1 o ®.0
- L] L
g
- °, °
g0 .o . .
2 - ;
— ¢ - N
-1 ® . g®
) !
-2 -1 0 1 2 3
Real Part
2
1 o 0P .0
. % ey
O? 0.‘ 60
> . .
§ 0 -.o o0 ®
éﬁ ‘6. c:
- ."o. o‘
=1 oSN o
=) -1 0 1 2 3
Real Part

the root maintains its location, even as time (and, therefore, the
order of the polynomial) is increased. (As mentioned in the pre-
vious section, this causes a spurious valley in the error surface,
as shown in Figs. 3 and 4.) The effect is demonstrated in Fig. 8,
which shows the movement of the roots of a polynomial as the
order of the polynomial is increased. Note that when the order is
10, there is one root at approximately 2.66. This root maintains
its location as the order of the polynomial is increased, while
the other roots move toward the unit circle.

To investigate why this root is frozen, let us assume that the
polynomial of (3) has a root at wg. Consider the displacement of
the root 6w, due to a perturbation in the coef cient ¢; of 6¢;[11]

k
9" (wo + dw; k) Z ci(wo + dw)" ‘4 dej(wo + 6w)j (6)
1=0

where ¢* () is the polynomial of (3) with the perturbed co-
ef cient. This expression is equal to zero, because wy + dw
is a root of the modi ed polynomial. Note that the rst term
(the summation) on the right-hand side of (6) corresponds to
g (wp + dw; k), therefore we can write

g (wo + dw; k) = —dc;(wo + w)’. (7)

Now perform a Taylor series expansion of each side of (7)

1
—,g
7.

M»

g (wo + dw; k) = 6w) (8)

i=1

Authorized licensed use limited to: Oklahoma State University. Downloaded on May 14, 2009 at 16:58 from |IEEE Xplore. Restrictions apply.

HORN et al.: SPURIOUS VALLEYS IN THE ERROR SURFACE OF RECURRENT NETWORKS

where the i = 0 term is missing from the summation because
wy 1s a root of g(w; k), and

— bcj(wo + sw)!
= —6cj{w0j —I—jwoj_léw

JU-1-(G-Fk— 1)w0j—k(5w)k}'

©)

If we now set (8) equal to (9) and take the limit as éc;, and
therefore, also 6w, go to zero, we nd

g(wo; k)(l)ﬁw = —bcjwo’ (10)

or

dw __ wod (11)
be; g(wo; k)Y

This tells us the sensitivity of the root location, as a function
of one of the coef cients in the polynomial. It is related to the
condition of the polynomial, which is de ned in [11].

To relate this result to the recurrent network response of (2),
we will rst assume that a(0) = 0 and w; = 1. (This will
simplify the development without changing the overall conclu-
sions.) The resulting network response will be

a(k+1)=p(k+1)+wp(k)+ -+ wp(1)

k
=Y pk+1-i)wy.

(12)
1=0
If we equate this expression with (3), we see that
ci=plk+1-1). (13)

Now consider the coef cient ¢y = p(k + 1). This is the last
input to come into the network, and it increases the order of the
polynomial by 1. When ¢q = p(k + 1) = 0, all previous roots
are unchanged. The sensitivity of a previous root to changes in
this coef cient is given by (11)

’wOO 1

= = : (14)
e g(woi k)Y g(wo; k)™

bw

The denominator in this term is the rst derivative of the poly-
nomial g(w; k), evaluated at the root wq

k
.G(wo;k)<1) = Zci i -wet L

i=1

(15)

If the coef cients are random with mean zero and variance 1,
then this term has variance given by

k
var (g(wg; k‘)(l)) = Z i w2, (16)
=1

If the root wy is greater than 1 in magnitude, then this variance
will be very large even for moderate values of £. This means that
it is highly likely that g(wq; k)™ will be very large, and, based

ANALYSIS AND AVOIDANCE 691

Inputs Tan-Sigmoid Neuron
4 N\ A\

n(?) a(f)
-

()

N\ VAN J
a(t) = tansig(w,p(H)+w,a(t-1))

Fig. 9. First-order nonlinear recurrent network.

on (14), that any root wy that is greater than 1 in magnitude will
not change signi cantly when the order of the polynomial is in-
creased. Therefore, any root of (2) with magnitude greater than
1 will be frozen in place as time is increased. This is exempli ed
by Figs. 4 and 8, as well as by many other experiments that we
have performed.

Here are the key results of this section that are most relevant to
the error surfaces of recurrent networks: 1) the roots of a RGP
are very likely to have some real roots that are greater than 1
in magnitude, and 2) if a RGP does have a root that is larger
than 1 in magnitude, that root will maintain its location as the
order of the polynomial is increased. These results explain one
cause of the spurious valleys that appear in the error surfaces
of recurrent networks. In the next section, we will demonstrate
how using a nonlinear transfer function will increase the number
and complexity of the resulting spurious valleys.

V. FIRST-ORDER NONLINEAR RECURRENT NETWORK

In addition to the rst-order linear recurrent network, we an-
alyzed the error surface of a rst-order nonlinear network, illus-
trated in Fig. 9. It is a simple extension of the linear network
of Fig. 2, in which a sigmoid nonlinearity replaces the linear
transfer function.

Fig. 10 presents the error surface for the nonlinear network,
using the same input sequence used in Section IIl. Due to the
sigmoid nonlinearity, the output is bounded for large weight
values. Therefore, the error does not grow without bound, as
in the linear network. We notice that the valley is still present,
however it is bent. This curving valley is still able to trap the
training algorithm and even to move the weights away from the
true minimum. In addition, several new valleys appear. As you
can see, the addition of the nonlinearity to the network signi -
cantly complicates the error surface.

Four types of valleys were identi ed in the error surfaces
of the nonlinear recurrent network. Like the linear network, a
valley appears along the line w; = 0. The cause of this valley
is the same in the nonlinear case as it is in the linear case: if the
initial condition a(0) is zero, then the output of the network will
be zero for all values of w, when wy = 0. The sum square error
is, therefore, limited to the sum square target values. The other
three types of valleys differ from those encountered in the linear
network, although they are related to the roots of a polynomial.

Equation (17) gives the output equation for the nonlinear re-
current network

a (k) = tansig (wip (k) + woa (k — 1)). 17

Authorized licensed use limited to: Oklahoma State University. Downloaded on May 14, 2009 at 16:58 from |IEEE Xplore. Restrictions apply.

692

Fig. 10. Error surface and valleys for rst-order nonlinear network.

For small values of the weights, the argument of the tansig
function is small, and this equation reduces to that of the linear
recurrent network. It is, therefore, not surprising that the valleys
that were seen in the linear case, related to the roots of the poly-
nomial of (2), appear also in the nonlinear case for small values
of wy. As the value of w; increases, however, the nonlinearity
causes the behavior of the valley to differ from the linear case.
In Fig. 3, we can see a valley that occurs at wo, = 3.8239, which
corresponds to the root of the polynomial. In Fig. 10, we see a
valley that starts at w, = 3.8239 for small values of wy, but
then curves to the left as wy increases in magnitude.

As soon as w; reaches a certain threshold, which can be de-
termined by the magnitude of the terms in the input sequence
and the magnitude of w4 at which the valley occurs, the output
begins to saturate at a certain point in time as the network leaves
the linear operating region of the tansig function. The output at
this point in time saturates and begins to approach a value of +1
or —1. The output for all following points in time, which are still
small enough to be operating in the approximately linear region
of the tansig function, can be approximated by

a(t+k)~w{p(t+k)+wp(t+k-1)

4w+ 1)} +wrFa(t). (18)

We again have a polynomial in the parameter ws, but in this
case, there is an additional term which does not include w; . This
means that the root of the polynomial is dependent on w, S0 as
wy increases, the root will increase as well. The valley found in
the nonlinear network follows the curve of this increasing root.

As w; increases further, more points in the input sequence
will saturate and cause additional valleys. This brings us to the
third type of valley, which occurs as w; and w- increase enough
to cause saturation in the output of the network at most time

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 20, NO. 4, APRIL 2009

€
(5]
[

/7
//

B o] £ " |
100 80 60 40 20 i 20 -40 -60 -60 -100
1

Fig. 11. Valleys in the error surface of the second and third type.

points. Fig. 11 illustrates both the second and third types of val-
leys.

When the output of the network at time & — 1 is saturated near
+1 or —1, then the output of the network at time &£ becomes
a function of w; and ws. For some combinations of weights,
the output will be near +1, and for others it will be near —1.
However, there is a transition point, while it is switching be-
tween positive and negative saturation, at which it will cross the
desired network output. Because the outputs at all other time
points are saturated and unchanging, changing this one output
so that it is equal to the target output will cause a valley in the
error surface. The possible locations of this valley can be found
by substituting +1 or —1 for a(k — 1) and the desired output
(or zero if this is not available) for a(k) in the output equation
of the network and solving for w; in terms of w,. This gives us

Adesired (k) + w2
p (k)

To make matters worse, a shift of the output at time &£ — 1
between +1 and —1 also has the potential to cause the output
at time £ to shift between +1 and —1. This can cause another

(19)

wp =

Authorized licensed use limited to: Oklahoma State University. Downloaded on May 14, 2009 at 16:58 from |IEEE Xplore. Restrictions apply.

HORN et al.: SPURIOUS VALLEYS IN THE ERROR SURFACE OF RECURRENT NETWORKS ANALYSIS AND AVOIDANCE 693

Fig. 12. Error surface and valleys for small
rst-order nonlinear network.

1 (fourth type of valley) for the

valley, and also can cause the output at time & + 1 to shift be-
tween +1 and —1. This cycle has the potential to continue until
the nal time point, so a single shift at time £ in an input se-
quence of length n has the potential to cause n — k + 1 valleys
near the line given by (19).

Fortunately, not all of these potential valleys actually appear
on the error surface. To determine which valleys will occur, a
simple algorithm can be written which keeps track of the sign of
the output at each time and determines which outputs will shift
between +1 and —1 as w; /ws varies from —oo to 0 and from
0 to co. Only the outputs that actually shift will cause valleys
to occur. Using this method, we were able to predict accurately
the locations of all valleys of this type that actually would occur
for a given input/output sequence of training data.

The fourth and nal type of valley that we identi ed and an-
alyzed in the error surface of the nonlinear recurrent network is
also related to the effects of saturation. When w; is small and w
is large, the output of the network for early points in time will
be near zero. As time progresses, however, the power to which
ws s raised increases and the output will eventually saturate to
+1 or —1 depending on the input sequence as well as the signs
of wy and w». Like the case where an output was switching be-
tween positive and negative saturation, the transition between
zero and the saturated value may cause the output to equal the
desired output for some combination of w; and ws. All other
points in the output sequence remain near zero or saturated near
this combination, so a valley is formed. These valleys are illus-
trated in Fig. 12.

In order to predict the location of these valleys, a simpli ca-
tion of the output equation at time % is necessary. Because the
output at all time points less than & is near zero, it can be as-
sumed to operate in the linear region of the sigmoid function.

The output equation at time % then reduces to that of the linear
network, given in (1). For large values of w» and small values of
w1, the output will be approximately equal to the desired output
when the following is satis ed:

e — a (k)
P wphlp (1)

This equation was reached by solving for w; and eliminating
all other terms, which are insigni cant compared to (w)*~!
because ws is large. This equation can be used to predict accu-
rately and reliably all valleys of this type that will occur in the
error surface for given set of training data.

Comprehensive prediction of all valleys that will occur in an
error surface for the rst-order nonlinear network can now be
achieved by combining the prediction methods for each of the
four types of valleys. The constraints mentioned for each type
of valley must be followed, so valleys will not be predicted for
real roots of the input sequence that have a magnitude less than
one. Valleys predicted by (19) and (20) will only occur for large
values of ws.

Let us summarize the results of this section. We have analyzed
the error surface of a single-neuron recurrent network with sig-
moid transfer function. By simply replacing the linear transfer
function with the sigmoid transfer function, we have greatly in-
creased the number and complexity of the spurious valleys in
the error surface. In fact, we have found four different types of
spurious valleys that can occur in this simple nonlinear network.
All of these valleys are related to the valleys that occur in linear
recurrent networks, but they are much more numerous and com-
plex because of the saturation of the sigmoid transfer function.
We were able to develop techniques for completely predicting
the locations of all the spurious valleys of this network, given
knowledge of the training data set.

Up to this point, we have not carried out a detailed analysis
beyond the single-neuron, nonlinear recurrent network. How-
ever, we have performed simulation experiments on a number
of more complex networks. What is clear is that as the size of
the network increases, the number and complexity of the spu-
rious valleys increase as well. In addition, we can say that the
locations of the valleys are dependent on the training data and
the initial conditions of the network. If the training data and ini-
tial conditions are modi ed, the spurious valleys will be moved
as well. In the next section, we will show how this knowledge
can be used to modify training procedures to improve conver-
gence.

(20)

VI. MODIFICATIONS TO THE TRAINING PROCEDURE

From the previous sections, we see that dif culties in training
recurrent neural networks could be due to the presence of spu-
rious valleys. The shape of the valleys are complex for large
nonlinear neural networks. If a gradient search algorithm falls
inside a valley, we may converge to a region where the network
is unstable or where the weights are unreasonably large. The lo-
cation of those valleys depends on the input sequence and on the
initial conditions. In this section, we will propose three modi-

cations to standard training procedures that can mitigate the
effects of the valleys.

Authorized licensed use limited to: Oklahoma State University. Downloaded on May 14, 2009 at 16:58 from |IEEE Xplore. Restrictions apply.

694

Fig. 13. Error surface for rst-order nonlinear network for different input se-
quence.

A. Proposed Solutions

In this section, we will propose three variations to the stan-
dard batch training algorithms for recurrent networks. These
variations include regularization, switching training sequences,
and randomly setting initial conditions.

If we compare the linear and nonlinear cases from Sections I11
and V, we notice that the linear case has a natural way of al-
lowing convergence to the optimal weights, because larger
weights generate large outputs. The farther we move from
the stable region, the larger the gradient will become. A gra-
dient-descent algorithm would generally move the weights
toward the stable region. This effect does not occur in the
nonlinear networks. However, we can obtain a similar effect if
we combine regularization [30] with our mean square error per-
formance function. In other words, we can use the performance
function

(w) = SSE + aSSW (21)
where SSE is the sum squared errors and SSW is the sum
squared weights. This performance function would help to
force the weights back into the stable region, because it would
overwhelm the spurious valleys for large values of the weights.

We can decrease the regularization factor « during training to
ensure that we do not bias the nal trained weights.

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 20, NO. 4, APRIL 2009

Sum Square Error

ST

-10 5 ‘ ;

10 5 0 -5 -10

Fig. 14. Error surface using sequence averaging.

Another technique for improved training involves using more
than one training sequence. Fig. 13 presents the error surface
for the nonlinear network of Fig. 9, using a different training
sequence. The valley that appeared in Fig. 10 has moved to a
different region of w,. For any two random input sequences,
the valleys will appear in different locations.

This suggests another technique for improved training. We
could use multiple training sequences. Because valleys are se-
quence dependent, we can use one sequence for a given humber
of epochs and then alternate to a new sequence. If we become
trapped in a spurious valley, that valley will disappear when the
new sequence is presented.

Another implementation of multiple sequences could be se-
quence averaging. We could compute the gradients for multiple
sequences and then move in the direction of the average. Fig. 14
presents an average error surface for ve sequences. This gure
demonstrates how the spurious valleys are reduced in amplitude.

Another method to move the valleys is to use random initial
conditions. Fig. 15 shows how the error surface is changed when
we set the initial condition to «(0) = 0.1. The valley at w; = 0,
which we discussed earlier, is missing. In later experiments with
larger networks, we found that the valleys do not always disap-
pear when nonzero initial conditions are used. They are often
only moved to new locations. A better approach would be to
use different small random initial conditions at different stages
of training. We could switch the initial conditions in combina-
tion with the switching of sequences.

Authorized licensed use limited to: Oklahoma State University. Downloaded on May 14, 2009 at 16:58 from |IEEE Xplore. Restrictions apply.

