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Spurious Valleys in the Error Surface of Recurrent
Networks—Analysis and Avoidance

Jason Horn, Member, IEEE, Orlando De Jesús, Member, IEEE, and Martin T. Hagan, Member, IEEE

Abstract—This paper gives a detailed analysis of the error sur-
faces of certain recurrent networks and explains some difficulties
encountered in training recurrent networks. We show that these
error surfaces contain many spurious valleys, and we analyze the
mechanisms that cause the valleys to appear. We demonstrate that
the principle mechanism can be understood through the analysis
of the roots of random polynomials. This paper also provides sug-
gestions for improvements in batch training procedures that can
help avoid the difficulties caused by spurious valleys, thereby im-
proving training speed and reliability.

Index Terms—Backpropagation, error surface, recurrent neural
networks, spurious minima, spurious valleys, training.

I. INTRODUCTION

R ECURRENT neural networks have been applied success-
fully in the identification and control of dynamic systems

[18], prediction in financial markets [32], channel equalization
in communication systems [12], phase detection in power sys-
tems [27], sorting [24], fault detection [6], speech recognition
[13], [16], [31], handwriting recognition [17], learning of gram-
mars in natural languages [29], and even the prediction of pro-
tein structure in genetics [14]. However, even though these net-
works have been widely used, the difficulty of recurrent net-
work training has limited their widespread application [3], [9],
[20]–[22].

One of the difficulties in training recurrent networks is the
existence of spurious local minima in the error surface. It has
been known for many years that even the error surfaces of mul-
tilayer feedforward networks can have local minima. Sontag and
Sussman [33] showed that even networks without hidden layers
can have such spurious minima. They considered pattern recog-
nition problems, in which sigmoid transfer functions were used.
Bianchini et al. [5] discussed the problem of local minima in
recurrent neural networks. They restricted their analysis to the
case of recurrent networks used for recognition of “frames.” The
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networks that they considered also used sigmoid transfer func-
tions. Their analysis showed how the network architecture and
the learning environment both contributed to the complexity of
the error surface. They showed that if the network architecture
and the learning environment satisfy certain “recurrent network
assumptions,” then the error surface contains no local minima.
However, these conditions for optimal learning are only suf-
ficient, and satisfying the criteria may require networks with
large input size based on the unfolding in time of the neural
network. More recently, Gori and Sperduti [15] developed suffi-
cient conditions which guarantee the absence of local minima of
the error function in the case of learning directed acyclic graphs
with recursive (related to recurrent) neural networks. They de-
veloped a method for designing a neural architecture with a
local-minima-free error function for a given data set. As in pre-
vious work, their networks used sigmoid transfer functions and
performed pattern recognition tasks.

There have been other approaches to recurrent network
training that involve selecting the initial weights so that the
chance of falling into a local minimum is minimized. For
example, Wang and Chen [38] describe an automated pro-
cedure that combines minimal model determination, weight
initialization, and performance optimization. This technique
is designed for a specific network architecture that is used for
dynamic system identification. Huang et al. [23] discuss the
problem of local minima in recurrent networks and propose
an efficient structure and parameter learning algorithm for
the Jordan network. A key step in their procedure is a good
initial guess for the network weights. Xiao et al. [39] propose
a two-stage training process. In the first stage, particle swarm
optimization is used to locate an initial guess that will speed
network convergence. In the second stage, a backpropagation
algorithm is used to train the network to convergence. All of
these papers use weight initialization to attempt to avoid local
minima in recurrent network error surfaces, but they do not
explain why the minima occur.

This paper will focus on recurrent networks that are used for
system identification, control, filtering, prediction, and related
tasks, which involve sequence processing and produce contin-
uous outputs. The concepts discussed here apply to arbitrary
recurrent network architectures, although we will fully inves-
tigate only simple networks. We will demonstrate that the error
surfaces of recurrent networks have spurious valleys, which can
disrupt in a significant way the training of recurrent networks.
We suggest a newly discovered mechanism that can explain, at
least in part, the cause of spurious valleys in the error surfaces
of recurrent networks. We show that this mechanism can even
produce spurious valleys in a simple recurrent network with a
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Fig. 1. Error profile.

linear transfer function and a single neuron. To our knowledge,
this has not been previously reported in the literature. Based on
our analysis of this mechanism, we will also propose modified
training procedures that can provide improved convergence. We
will demonstrate the operation of these modified training proce-
dures on two simple recurrent networks.

II. PRELUDE

We begin with a description of how we encountered spurious
valleys in the error surfaces of recurrent networks. While
training a neural-network-based model reference controller
[10], we found that the error sometimes increased during
training, although a line search minimization was being ex-
ecuted at each iteration. In order to understand the failure
of the line search, we plotted the error surface along the
search direction. A typical profile is shown in Fig. 1. For the
system shown, we have 65 weights being trained. The surface
we present is along the direction of search [obtained by the
Broyden–Fletcher–Goldfarb–Shanno (BFGS) quasi-Newton
algorithm] through a 65-dimensional space. It is clear from
this profile that any standard line search, using a combination
of interpolation and sectioning, will have great difficulty in
locating the minimum along the search direction. There are
many local minima contained in very narrow valleys. (Some of
the valleys were found to have widths on the order of .) In
addition, the bottom of the valleys are often cusps. (The neural
network function is continuous and infinitely differentiable,
so theoretically no cusps can exist. In practice, however, the
valleys are so narrow that they appear as cusps on the domain
of double-precision numbers, and therefore, they are effectively
cusps for most training and analysis purposes.) We normally
assume that the minimum will occur at the point where the
derivative is zero. However, for some of these valleys, the
derivative continues to increase as we approach the minimum.
Even if our line search were to locate the minimum, it is not
clear that the minimum represents an optimal weight location.
In fact, in the remainder of this paper, we will demonstrate that
spurious minima are introduced into the error surface due to
characteristics of the input sequence.

In order to understand how spurious valleys can appear in the
error surface, we analyzed the surfaces for some very simple
recurrent networks. The idea was to find the simplest network
that would produce the valleys. In the next section, we discuss a

Fig. 2. First-order linear recurrent network.

first-order linear recurrent network that produces spurious val-
leys. This is followed, in Section IV, with a theoretical anal-
ysis of the mechanism that causes the valleys. In Section V, we
will show how adding nonlinear transfer functions can affect
the shape of existing spurious valleys and generate new valleys.
This is followed in Section VI by some modifications we pro-
pose to improve the training process, based on our analysis of
the creation of the spurious valleys. Section VII of the paper
tests the proposed modifications on first- and second-order re-
current networks. In the last section, we give a summary of the
results.

III. FIRST-ORDER LINEAR RECURRENT NETWORK

Fig. 2 illustrates the simplest possible recurrent network. As
we will see, even this network produces spurious valleys similar
to those shown in Fig. 1.

In order to generate an error surface, we first develop training
data using the network of Fig. 2, where the weights are set to

and . We use a Gaussian white noise input
sequence with mean zero and variance one for , and then use
the network to generate a sequence of outputs . (When using
recurrent networks to model dynamic systems, it is a common
practice to use random, or pseudorandom, input sequences to
generate the training data.) Our training objective is then to train
another network with the same architecture to fit the training
data. The global minimum of the error surface (sum square error
over the training data) should occur at the values and

.
The left-hand side of Fig. 3 is a typical error surface obtained

using the above procedure for one particular input sequence and
the initial output . The right-hand side of Fig. 3 indi-
cates where the valleys occur. Although this network architec-
ture is simple, the error surfaces generated by these networks
have spurious valleys similar to those encountered in more com-
plicated networks.

There are several interesting features of the surface. First, the
error surface generally increases dramatically as the weight
becomes larger than 1 in magnitude. This is to be expected, since
the network is unstable for these weight values. What is unex-
pected are the two valleys that run through the surface. Even
though the network is unstable for , for this particular
input sequence, there are some values for in the unstable
range that produce small network outputs (and, therefore, rela-
tively small errors). We expect the output to grow without bound
under these conditions, but this does not always happen.
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Fig. 3. Error surface (log scale) and valleys for first-order linear network.

Fig. 4. Sum square error cross sections for � � ��� for different values of sequence length �.

The two valleys in the error surface occur for two different
reasons. One valley occurs along the line . If this weight
is zero, and the initial condition is zero, the output of the network
will remain zero, no matter what value is used for . Therefore,
our mean squared error will be constant and equal to the mean
square value of the target outputs.

The second, and more interesting, valley in the error surface
is due to the input sequence that is presented to the network. For
a given input , the system output will be

(1)

If we accumulate the responses starting from some initial con-
dition up to time , we obtain

...

(2)

Here we can see that the response at time is a polynomial
in the parameter . (It will be a polynomial of degree , if
the initial condition is zero.) The coefficients of the polynomial
involve the input sequence and the initial condition. We obtain

the second valley because this polynomial contains a root out-
side the unit circle. There is some value of that is larger than
1 in magnitude for which the output is almost zero.

Of course, having a single output close to zero would not pro-
duce a valley in the error surface. However, we discovered that
once the polynomial shown in (2) has a root outside the unit
circle at time , that same root also appears in the next polyno-
mial at time , and therefore, the output will remain small
for all future times for the same weight value. The theoretical
mechanism for the frozen root will be analyzed in Section IV.

Fig. 4 shows a cross section of the error surface presented in
Fig. 3 for using different sequence lengths. The error
falls abruptly near . That is the root of the polynomial
described in (2). The root maintains its location as the sequence
increases in length ( increases). This causes the valley in the
error surface.

To summarize, there are two mechanisms that create the spu-
rious valleys. The first mechanism has to do with the initial con-
ditions. If some initial conditions are zero, then there are certain
combinations of weights that will produce zero outputs for all
time. (This effect is more complex in larger networks, as we will
see in Section VII.) The second mechanism has to do with the
input sequence. There are values for the weights that produce
an unstable network, but for which the output remains small for
a particular input sequence. If the input sequence is modified, it
will produce a valley in a different location.
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Fig. 5. Density of real roots of a random polynomial of degree 50.

Fig. 6. Expected number of real roots of a RGP as a function of �.

Comprehensive prediction of valleys for this first-order linear
recurrent network is relatively simple since only two types of
valleys are encountered. We predict a valley where is equal
to zero, and we predict a valley where is equal to a real root
of the polynomial that has the input sequence as its coefficients.
If the value of the root is not greater than one (producing an
unstable system), then the output will not be significantly higher
for values on either side of the root than for values at the root,
so the valley will not occur.

In the following section, we will investigate the theoretical
mechanisms for the spurious valley caused by the root of the
polynomial in (2) outside the unit circle.

IV. ROOTS OF RANDOM POLYNOMIALS

One of the keys to the locations of the spurious valleys in the
error surface of recurrent networks are the roots of polynomials,
as in (2). In this section, we will investigate these polynomial
roots in more detail. First, assume that we have a polynomial in
the following form [4], [25]:

(3)

Fig. 7. Distribution of roots of a 500th-order RGP.

We will analyze such polynomials where the coefficients are
independent random variables that have a Gaussian distribution
with mean zero and variance one. We will call these polynomials
random Gaussian polynomials (RGP). The general patterns that
we will demonstrate are not extremely sensitive to the exact dis-
tribution of the coefficients, but the Gaussian assumption allows
a clear development.

We are especially interested in the roots of RGPs that are real
and that fall outside the unit circle. In that case, for the poly-
nomial in (2), the network output will be zero for some feed-
back gain that is greater than one in magnitude, which would
normally produce a large output. There are several things that
we can say about the real roots of (3). First, the probability of
getting a real root in the interval is the same as the prob-
ability of getting a real root in the interval . This is because
the polynomial with a root at can be converted to a polynomial
with a root at by reversing the order of the coefficients.
Under our previous assumptions, these two polynomials would
have equal probability of occurrence. In addition, the probability
of getting a positive real root will be equal to the probability of
obtaining a negative real root. This is because the polynomial
with a root at can be converted to a polynomial with a
root at by changing the signs of the coefficients at odd
powers of . To summarize, the real roots of a RGP are equally
likely to fall in any of the following four intervals: ,

, , and . This means that half of the real roots
of a RGP are likely to fall outside the unit circle.

Kac [26] derived the density for the real zeros of the RGP in
(3)

(4)
This is plotted in Fig. 5 for the case where . This

function should be divided by the area under the curve to obtain
the conditional probability function for a root, given that it is
real.

In addition to knowing the probable locations of the real roots
of RGPs, we would also like to know how many of the roots will
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Fig. 8. Movement of roots as order is increased �� � ��� ���������.

be real. The expected number of real roots can be obtained from
the integral of (4) over the real line. This is shown in Fig. 6 as

varies from 1 to 100.
As can be seen from Fig. 6, the number of real roots is small.

Kac [25] showed that the number of real roots goes up as the log
of the order of the polynomial, as is seen in the following strict
upper bound:

(5)

The number of real roots goes up fairly rapidly as the order
is initially increased, but then the rate of increase diminishes
quickly. This means that you are likely to have a few real roots,
even if the order of the polynomial is small, but the number of
real roots does not increase significantly as the order increases.

For the RGP roots that are not real, Bharucha-Reid [4] has
shown that they are distributed near the unit circle. This can be
seen in Fig. 7, which shows the roots of a 500th-order RGP. We
can see that most of the roots are complex, and are heavily con-
centrated near the unit circle. There are several real roots, and
one is located well outside the unit circle, near 2. Note that the
distribution of (4) and Fig. 5 has heavy tails (decays slower than
the exponential distribution), which means that there is a signif-
icant probability of having roots well outside the unit circle.

Note that in our recurrent network response of (2) the order
of the polynomial increases with time. We have found through
numerous experiments that if a real root of the polynomial falls
well outside the unit circle (e.g., with a magnitude of 2), then

the root maintains its location, even as time (and, therefore, the
order of the polynomial) is increased. (As mentioned in the pre-
vious section, this causes a spurious valley in the error surface,
as shown in Figs. 3 and 4.) The effect is demonstrated in Fig. 8,
which shows the movement of the roots of a polynomial as the
order of the polynomial is increased. Note that when the order is
10, there is one root at approximately 2.66. This root maintains
its location as the order of the polynomial is increased, while
the other roots move toward the unit circle.

To investigate why this root is frozen, let us assume that the
polynomial of (3) has a root at . Consider the displacement of
the root , due to a perturbation in the coefficient of [11]

(6)

where is the polynomial of (3) with the perturbed co-
efficient. This expression is equal to zero, because
is a root of the modified polynomial. Note that the first term
(the summation) on the right-hand side of (6) corresponds to

, therefore we can write

(7)

Now perform a Taylor series expansion of each side of (7)

(8)
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where the term is missing from the summation because
is a root of , and

(9)

If we now set (8) equal to (9) and take the limit as , and
therefore, also , go to zero, we find

(10)

or

(11)

This tells us the sensitivity of the root location, as a function
of one of the coefficients in the polynomial. It is related to the
condition of the polynomial, which is defined in [11].

To relate this result to the recurrent network response of (2),
we will first assume that and . (This will
simplify the development without changing the overall conclu-
sions.) The resulting network response will be

(12)

If we equate this expression with (3), we see that

(13)

Now consider the coefficient . This is the last
input to come into the network, and it increases the order of the
polynomial by 1. When , all previous roots
are unchanged. The sensitivity of a previous root to changes in
this coefficient is given by (11)

(14)

The denominator in this term is the first derivative of the poly-
nomial , evaluated at the root

(15)

If the coefficients are random with mean zero and variance 1,
then this term has variance given by

(16)

If the root is greater than 1 in magnitude, then this variance
will be very large even for moderate values of . This means that
it is highly likely that will be very large, and, based

Fig. 9. First-order nonlinear recurrent network.

on (14), that any root that is greater than 1 in magnitude will
not change significantly when the order of the polynomial is in-
creased. Therefore, any root of (2) with magnitude greater than
1 will be frozen in place as time is increased. This is exemplified
by Figs. 4 and 8, as well as by many other experiments that we
have performed.

Here are the key results of this section that are most relevant to
the error surfaces of recurrent networks: 1) the roots of a RGP
are very likely to have some real roots that are greater than 1
in magnitude, and 2) if a RGP does have a root that is larger
than 1 in magnitude, that root will maintain its location as the
order of the polynomial is increased. These results explain one
cause of the spurious valleys that appear in the error surfaces
of recurrent networks. In the next section, we will demonstrate
how using a nonlinear transfer function will increase the number
and complexity of the resulting spurious valleys.

V. FIRST-ORDER NONLINEAR RECURRENT NETWORK

In addition to the first-order linear recurrent network, we an-
alyzed the error surface of a first-order nonlinear network, illus-
trated in Fig. 9. It is a simple extension of the linear network
of Fig. 2, in which a sigmoid nonlinearity replaces the linear
transfer function.

Fig. 10 presents the error surface for the nonlinear network,
using the same input sequence used in Section III. Due to the
sigmoid nonlinearity, the output is bounded for large weight
values. Therefore, the error does not grow without bound, as
in the linear network. We notice that the valley is still present,
however it is bent. This curving valley is still able to trap the
training algorithm and even to move the weights away from the
true minimum. In addition, several new valleys appear. As you
can see, the addition of the nonlinearity to the network signifi-
cantly complicates the error surface.

Four types of valleys were identified in the error surfaces
of the nonlinear recurrent network. Like the linear network, a
valley appears along the line . The cause of this valley
is the same in the nonlinear case as it is in the linear case: if the
initial condition is zero, then the output of the network will
be zero for all values of when . The sum square error
is, therefore, limited to the sum square target values. The other
three types of valleys differ from those encountered in the linear
network, although they are related to the roots of a polynomial.

Equation (17) gives the output equation for the nonlinear re-
current network

(17)
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Fig. 10. Error surface and valleys for first-order nonlinear network.

For small values of the weights, the argument of the tansig
function is small, and this equation reduces to that of the linear
recurrent network. It is, therefore, not surprising that the valleys
that were seen in the linear case, related to the roots of the poly-
nomial of (2), appear also in the nonlinear case for small values
of . As the value of increases, however, the nonlinearity
causes the behavior of the valley to differ from the linear case.
In Fig. 3, we can see a valley that occurs at , which
corresponds to the root of the polynomial. In Fig. 10, we see a
valley that starts at for small values of , but
then curves to the left as increases in magnitude.

As soon as reaches a certain threshold, which can be de-
termined by the magnitude of the terms in the input sequence
and the magnitude of at which the valley occurs, the output
begins to saturate at a certain point in time as the network leaves
the linear operating region of the tansig function. The output at
this point in time saturates and begins to approach a value of
or . The output for all following points in time, which are still
small enough to be operating in the approximately linear region
of the tansig function, can be approximated by

(18)

We again have a polynomial in the parameter , but in this
case, there is an additional term which does not include . This
means that the root of the polynomial is dependent on , so as

increases, the root will increase as well. The valley found in
the nonlinear network follows the curve of this increasing root.

As increases further, more points in the input sequence
will saturate and cause additional valleys. This brings us to the
third type of valley, which occurs as and increase enough
to cause saturation in the output of the network at most time

Fig. 11. Valleys in the error surface of the second and third type.

points. Fig. 11 illustrates both the second and third types of val-
leys.

When the output of the network at time is saturated near
or , then the output of the network at time becomes

a function of and . For some combinations of weights,
the output will be near , and for others it will be near .
However, there is a transition point, while it is switching be-
tween positive and negative saturation, at which it will cross the
desired network output. Because the outputs at all other time
points are saturated and unchanging, changing this one output
so that it is equal to the target output will cause a valley in the
error surface. The possible locations of this valley can be found
by substituting or for and the desired output
(or zero if this is not available) for in the output equation
of the network and solving for in terms of . This gives us

(19)

To make matters worse, a shift of the output at time
between and also has the potential to cause the output
at time to shift between and . This can cause another
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Fig. 12. Error surface and valleys for small � (fourth type of valley) for the
first-order nonlinear network.

valley, and also can cause the output at time to shift be-
tween and . This cycle has the potential to continue until
the final time point, so a single shift at time in an input se-
quence of length has the potential to cause valleys
near the line given by (19).

Fortunately, not all of these potential valleys actually appear
on the error surface. To determine which valleys will occur, a
simple algorithm can be written which keeps track of the sign of
the output at each time and determines which outputs will shift
between and as varies from to 0 and from
0 to . Only the outputs that actually shift will cause valleys
to occur. Using this method, we were able to predict accurately
the locations of all valleys of this type that actually would occur
for a given input/output sequence of training data.

The fourth and final type of valley that we identified and an-
alyzed in the error surface of the nonlinear recurrent network is
also related to the effects of saturation. When is small and
is large, the output of the network for early points in time will
be near zero. As time progresses, however, the power to which

is raised increases and the output will eventually saturate to
or depending on the input sequence as well as the signs

of and . Like the case where an output was switching be-
tween positive and negative saturation, the transition between
zero and the saturated value may cause the output to equal the
desired output for some combination of and . All other
points in the output sequence remain near zero or saturated near
this combination, so a valley is formed. These valleys are illus-
trated in Fig. 12.

In order to predict the location of these valleys, a simplifica-
tion of the output equation at time is necessary. Because the
output at all time points less than is near zero, it can be as-
sumed to operate in the linear region of the sigmoid function.

The output equation at time then reduces to that of the linear
network, given in (1). For large values of and small values of

, the output will be approximately equal to the desired output
when the following is satisfied:

(20)

This equation was reached by solving for and eliminating
all other terms, which are insignificant compared to
because is large. This equation can be used to predict accu-
rately and reliably all valleys of this type that will occur in the
error surface for given set of training data.

Comprehensive prediction of all valleys that will occur in an
error surface for the first-order nonlinear network can now be
achieved by combining the prediction methods for each of the
four types of valleys. The constraints mentioned for each type
of valley must be followed, so valleys will not be predicted for
real roots of the input sequence that have a magnitude less than
one. Valleys predicted by (19) and (20) will only occur for large
values of .

Let us summarize the results of this section. We have analyzed
the error surface of a single-neuron recurrent network with sig-
moid transfer function. By simply replacing the linear transfer
function with the sigmoid transfer function, we have greatly in-
creased the number and complexity of the spurious valleys in
the error surface. In fact, we have found four different types of
spurious valleys that can occur in this simple nonlinear network.
All of these valleys are related to the valleys that occur in linear
recurrent networks, but they are much more numerous and com-
plex because of the saturation of the sigmoid transfer function.
We were able to develop techniques for completely predicting
the locations of all the spurious valleys of this network, given
knowledge of the training data set.

Up to this point, we have not carried out a detailed analysis
beyond the single-neuron, nonlinear recurrent network. How-
ever, we have performed simulation experiments on a number
of more complex networks. What is clear is that as the size of
the network increases, the number and complexity of the spu-
rious valleys increase as well. In addition, we can say that the
locations of the valleys are dependent on the training data and
the initial conditions of the network. If the training data and ini-
tial conditions are modified, the spurious valleys will be moved
as well. In the next section, we will show how this knowledge
can be used to modify training procedures to improve conver-
gence.

VI. MODIFICATIONS TO THE TRAINING PROCEDURE

From the previous sections, we see that difficulties in training
recurrent neural networks could be due to the presence of spu-
rious valleys. The shape of the valleys are complex for large
nonlinear neural networks. If a gradient search algorithm falls
inside a valley, we may converge to a region where the network
is unstable or where the weights are unreasonably large. The lo-
cation of those valleys depends on the input sequence and on the
initial conditions. In this section, we will propose three modi-
fications to standard training procedures that can mitigate the
effects of the valleys.
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Fig. 13. Error surface for first-order nonlinear network for different input se-
quence.

A. Proposed Solutions

In this section, we will propose three variations to the stan-
dard batch training algorithms for recurrent networks. These
variations include regularization, switching training sequences,
and randomly setting initial conditions.

If we compare the linear and nonlinear cases from Sections III
and V, we notice that the linear case has a natural way of al-
lowing convergence to the optimal weights, because larger
weights generate large outputs. The farther we move from
the stable region, the larger the gradient will become. A gra-
dient-descent algorithm would generally move the weights
toward the stable region. This effect does not occur in the
nonlinear networks. However, we can obtain a similar effect if
we combine regularization [30] with our mean square error per-
formance function. In other words, we can use the performance
function

(21)

where SSE is the sum squared errors and SSW is the sum
squared weights. This performance function would help to
force the weights back into the stable region, because it would
overwhelm the spurious valleys for large values of the weights.
We can decrease the regularization factor during training to
ensure that we do not bias the final trained weights.

Fig. 14. Error surface using sequence averaging.

Another technique for improved training involves using more
than one training sequence. Fig. 13 presents the error surface
for the nonlinear network of Fig. 9, using a different training
sequence. The valley that appeared in Fig. 10 has moved to a
different region of . For any two random input sequences,
the valleys will appear in different locations.

This suggests another technique for improved training. We
could use multiple training sequences. Because valleys are se-
quence dependent, we can use one sequence for a given number
of epochs and then alternate to a new sequence. If we become
trapped in a spurious valley, that valley will disappear when the
new sequence is presented.

Another implementation of multiple sequences could be se-
quence averaging. We could compute the gradients for multiple
sequences and then move in the direction of the average. Fig. 14
presents an average error surface for five sequences. This figure
demonstrates how the spurious valleys are reduced in amplitude.

Another method to move the valleys is to use random initial
conditions. Fig. 15 shows how the error surface is changed when
we set the initial condition to . The valley at ,
which we discussed earlier, is missing. In later experiments with
larger networks, we found that the valleys do not always disap-
pear when nonzero initial conditions are used. They are often
only moved to new locations. A better approach would be to
use different small random initial conditions at different stages
of training. We could switch the initial conditions in combina-
tion with the switching of sequences.
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Fig. 15. Error surface using ���� � ���.

In all, we have four proposed training modifications. For ease
of reference, we will label them as follows: switching sequences
(SS), averaging sequences (AS), regularization (REG), nonzero
initial conditions (IC).

VII. TEST RESULTS

In this section, we will test the training modifications that
were proposed in the previous section. For these tests, we will
train the nonlinear network shown in Section V (and a more
complex, second-order network) using the standard gradient-de-
scent algorithm with a golden section line search. We will not
worry about using the most sophisticated training algorithm.
Rather, the objective will be to verify the ability of the new
procedures to improve training performance. The results ob-
tained with the basic gradient-descent algorithm will be our
baseline. Other tests will be performed for each one of the pro-
posed modifications. For the REG test, we divided by 1.2 at
each epoch. For the IC method, we set all layer initial condi-
tions to 0.2. One test was performed using all three methods.
We called this training procedure the “multiple” method. For
all tests, the gradient is computed using the real-time recurrent
learning method described in [7], [8], [19], and [34]–[36]. A
batch gradient is used, which encompasses the full length of the
training sequence.

TABLE I
CONVERGENCE PERCENTAGES FOR SINGLE-NEURON

RECURRENT NETWORK TRAINING

TABLE II
CONVERGENCE PERCENTAGES FOR TWO-NEURON

RECURRENT NETWORK TRAINING

A. First-Order Nonlinear System

For the first-order nonlinear system, we generated training
data using and . The training was done
using 25 000 different sequences of 15 samples each and random
initial conditions. The random initial weights were generated in
three different levels: 1, 5, and 20 standard deviations from the
true solution.

Table I summarizes the results of the first tests on the first-
order network. It shows the percentage of tests in which the
weights converged close to the optimal weights. (For our tests,
“close” is defined as a distance of 0.5 from the optimal weights.
The results are not sensitive to small changes in this criterion,
although training times are longer when smaller distances are
used.) Each method provides some improvement on the base-
line method. However, the multiple method is the only one that
guarantees accurate convergence.

Fig. 16 shows the final (converged) weight positions in the
versus plane for baseline, SS, AS, and IC. (Fig. 16 does

not show results for the multiple method, because all converged
weight positions were very close to the optimal weight posi-
tion— and .) For the first three methods,
many tests finished along the valley at . That condition
was removed when we changed the initial conditions. When we
switch the sequences, we avoid many cases where training may
be trapped in the other spurious valleys. (In Fig. 16, only the
valley caused by the zero initial condition is clearly displayed.
This is because the other valleys are dependent on the input se-
quence, which was changed for each Monte Carlo trial.) The
averaging of sequences did not improve our training results, re-
sulting in worse results than the baseline method for 5 std.

B. Two-Layer Neural Network

Fig. 17 shows a neural network with two layers, where each
layer is fed back to the previous layers. This system will allow
us to test the previous training procedure modifications on a
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Fig. 16. Final weight positions in the � versus � plane for 5 std.

more complex system. For these tests, we generated training
data using the following weights:

Table II shows the percentage of weights close to the final
weights (within a distance of 0.5) after the training process.
For this neural network architecture, regularization resulted in
a success rate of over 90%. However, it is again the multiple
method that guarantees the best convergence.

Fig. 18 presents the final weight positions in the versus
plane for the baseline, SS, and IC training methods. For

the baseline training method, we notice the presence of three
valleys (due to zero initial conditions) where the training con-
verged. The SS method can eliminate the diagonal valleys due
to the initial conditions, as well as the valleys due to the input
sequence. However, the valley along remains. When we
set the initial layer conditions to 0.2, we can see from the last
figure that although the valley at is removed, two new
valleys appear. This demonstrates that setting the initial condi-
tions to nonzero values does not necessarily remove spurious

Fig. 17. Two-layer nonlinear model.

valleys. It may just move them to new locations. This suggests
that we should vary the initial conditions whenever we switch
the training sequence.

Fig. 19 shows how the final distance to the optimal weights
is affected by the switching sequence interval. While training
for 10 000 epochs, we switched the training sequence every 1,
10, 100, 500, and 1000 epochs. Frequent changes consistently
resulted in more accurate final weights. If training continues
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Fig. 18. Final weight positions in the � versus � plane for 20 std.

with the same sequence, we could be caught in a spurious valley,
resulting in failed training.

Fig. 20 shows the average performance for four different
switching intervals (the training sequence is switched every
epoch, every 10th epoch, every 100th epoch, and every 500th
epoch). We obtain substantial improvement when the sequence
is switched more frequently. In fact, for this test problem, the
best results were obtained when the sequence was switched
after each epoch. We can conclude that we should not maintain
the same sequence for long periods, when training recurrent
neural networks.

Another battery of tests was performed to evaluate how to
adjust when regularization is being used. We adjusted by

Fig. 19. Final distance to optimal weights for different switching sequence in-
tervals.

Fig. 20. Average performance for different switching sequence intervals (1, 10,
100, 500).

dividing it by a constant at each epoch. In this way, the regular-
ization penalty will not bias the final weights, but intermediate
weights will be forced out of the regions with spurious valleys.
The constants we used were 1.01, 1.2, and 2. Using a constant of
2 means that the regularization parameter is reduced by half
at each epoch. Fig. 21 shows the average performance when
is divided by 1.01 and 1.2 at each epoch. The best results were
obtained for 1.2. (The results for 2 were almost identical to the
results for 1.2.) From this test, we can conclude that must be
decreased in some way to obtain the best training results.

Fig. 22 shows the number of floating point operations
(FLOPs) required to train the two-layer neural network to
convergence using the multiple method with different sequence
lengths. This figure does not demonstrate any advantage to
using long sequences for this network. The algorithm converged
for all sequences, but the longer sequences require more compu-
tation. One would expect that for more complex networks there
might be some advantage to longer sequences, because it might
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Fig. 21. Average performances for regularized training when � is divided by
1.01 and 1.2 at each epoch.

Fig. 22. FLOPs required to obtain convergence as a function of sequence
length.

take a longer time sequence to enable accurate identification of
the more complex dynamics of the corresponding process.

VIII. CONCLUSION

This paper has presented an analysis of some problems that
are encountered when training recurrent neural networks. We
found that the error surface for recurrent neural networks con-
tains spurious valleys that make the training more difficult for
batch gradient-descent algorithms. The formation of these val-
leys can be understood through an analysis of random polyno-
mials. This type of analysis has not been previously used to ex-
amine recurrent network performance. We have identified four
different types of spurious valleys, and have developed algo-
rithms to predict the valley locations for simple networks.

Even though a detailed analysis of the valley formation for
large networks has not been performed, we know that the loca-
tions of the valleys are dependent on the data used to train the
networks and on the initial conditions of the layer outputs. If

the training data or the initial conditions are changed, then the
locations of the valleys are moved. Using this knowledge, we
proposed several techniques for improving the convergence of
recurrent network batch training algorithms. We found that reg-
ularization, frequent switching of training sequences, and ap-
plication of random initial conditions to the layer outputs are
useful training modifications for recurrent networks that miti-
gate the effects of the spurious valleys.

The algorithm modifications that we have proposed are not
entirely new. The idea of switching sequences is related to sto-
chastic algorithms, such as stochastic gradient and extended
Kalman filter methods, in which the weights are updated as each
input is presented to the network, and no line search is per-
formed. (It has been known for some time that stochastic algo-
rithms perform better than standard batch algorithms for recur-
rent networks. The analysis provided in this paper provides an
explanation for this behavior.) Regularization has been used for
many years, and can be developed from a Bayesian framework
in which a Gaussian prior is assumed for the network weights
[28], although the decay of the regularization parameter is a new
modification for recurrent network training. To our knowledge,
the random setting of initial conditions (for the delay states in
the network—not for the network weights) has not been previ-
ously suggested in the literature. The novelty of our approach
is that all of these techniques are used in combination to avoid
spurious local minima that are caused by the specific training
input sequence and initial delay states.

The analysis in Sections IV and V suggests yet another ap-
proach for avoiding the spurious valleys. Because the valleys
are related to instabilities in the neural network, one might be
able to use a constrained optimization process to avoid these in-
stabilities during training. However, the implementation of the
constraints would be extremely complex for the general training
of recurrent networks. For the simple network of Fig. 2, stability
could be maintained by forcing the magnitude of the weight
to be less than 1 in magnitude. However, the constraint would
be much more complex for a network with arbitrary recurrent
connections. We cannot really talk about the stability of an ar-
bitrary nonlinear recurrent network, but rather the stability of
a particular trajectory—typically an equilibrium point (see [2]
and [37]). For a given network, some solutions might be stable
and others unstable. In addition, we may want to use a recur-
rent network to model a chaotic system. Such a system would
have locally unstable solutions, although the responses would
be globally bounded. For these cases, we would not want to
constrain the weights to maintain stability. The constrained op-
timization approach might be possible if these issues could be
addressed.
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