ECEN 3021
Experimental Methods II
Fall 2004

Laboratory Session Using MATLAB®

Lab \#2

Introduction/MATLAB Environment

Engineering Problem Solving

Introduction to Mathematical Computation Tools

- This software category includes packages such as Mathematica, Mathcad, Maple, Macsyma and MATLAB
- Allow symbolic calculations and the the manipulation of complex mathematical formulas
- Contain extensive capabilities for generating graphs
- Useful tools for engineers because of their combination of computational and visualization power

Engineering Problem Solving

An Engineering Problem-Solving Methodology:

Can be used with any of the mathematics packages, including MATLAB

- State clearly the problem which is to be solved
- Input/Output Description
- What information is given (inputs)?
- What quantities must be found (outputs)?
- What mathematical relations link the inputs to the outputs?
- Hand Example
- Using a simple set of data, work the problem by hand or with a calculator
- This is the step which allows the solution sequence to be developed in detail
- MATLAB Solution
- Develop an algorithm, which is a step-by-step mathematical outline of the your proposed solution
- Translate the algorithm into MATLAB code
- Testing: Ensure that your MATLAB routine works properly by testing it using a variety of data

MATLAB Environment

MATLAB Windows

- The command window is active when you first enter MATLAB
- Interactive commands can be entered at the prompt
- Results (output) will automatically be displayed

- The graphics window is used to display plots and graphs. To see the graphics window
- Type the following at the prompt: » $\operatorname{plot}([1,2,4,9,16],[1,2,3,4,5])$
- MATLAB plots the vectors as shown below:

MATLAB Environment

MATLAB Windows (continued)

- The demo window
- Activate by typing demo at the command window prompt
- Choose from among the topics listed in the left window

- The edit window
- Used to create and modify M-files (MATLAB scripts)
- Type edit at the command window prompt

MATLAB Editor/Debugger

Using M-files

- M-files allow you to save and execute multiple commands or entire programs with a single command line entry
- Creating an m-file
- Open the MATLAB editor
- Type in the commands you want to execute
- Save the file in a location accessible to MATLAB (usually the MATLAB work directory or current working directory)
- In the MATLAB command window, type in the name of the file to execute the commands
- Executing an m-file of this type has the same effect as copying and pasting the commands into the command window
- MATLAB also supports functions, which execute in a separate workspace and do not have access to all user workspace variables
- Writing functions
- Functions are also contained in m-files, so the creation process is similar
- A function must begin with a line of the following format: function <outputs>=functionname (<inputs>)
- The commands following this line are standard MATLAB commands that may use the inputs and must assign values to the outputs

MATLAB Environment

MATLAB Interactive Help Window

- Access via the pull down Help menu - click on Help Window
- Double-click on a topic of interest
- A non-interactive version of help is available by typing help at the command window prompt
- An HTML version of help is available by choosing Help Desk from the pull down $\underline{H e l p}$ menu

-) MATLAB Command Window

File Edit View Window Help

\longrightarrow| Pull down |
| :---: |
| Help menu |\longrightarrow| Eelp Lesk (HTML) |
| :---: |
| Examples and Demos
 About MATLAB... |

MATLAB Environment

Managing the MATLAB Environment
Access the following by typing into the command window:

Task	MATLAB Command
Short description of runtime environment (assigned variables)	who
Detailed description of runtime environment	whos
Clearing the environment (removing all variables from memory)	clear
Clear command window	clc
Clear current figure (graphics window)	clf
Save your environment (defined variables)	save filename
Load previously saved environment (.mat extension will be automatically added)	load filename
List files in the current directory	dir
Delete a file from the current directory	delete
Move to another directory	cd
Show current path (directory)	path

Some tasks can be accessed via the File pull down menu:

MATLAB Environment

The Matrix Data Structure

- All variables in MATLAB are represented as matrices
- Scalars: 1 by 1 matrices
- Vectors: n by 1 or 1 by n matrices $\quad c=\left[\begin{array}{l}3 \\ 1\end{array}\right] \quad r=\left[\begin{array}{ll}4 & 4\end{array}\right]$
- Anatomy of a matrix
- Elements (entries) arranged in rows and columns
- Individual elements can be referenced by their row and column location; e.g., $a_{4,2}=7$

$$
\mathrm{a}=\left[\begin{array}{cc}
2 & 0.5 \\
-4 & 1 \\
3 & 2 \\
1 & 7
\end{array}\right]
$$

- Square matrix: A matrix whose number of rows and columns are equal
- Rules for variables
- Variable names must start with a letter
- Variable names can contain letters, digits and the underscore character (_)
- Variable names can be any length, but they must be unique within the first 19 characters
- MATLAB is case sensitive, so A and a represent different variables

MATLAB Environment

Initializing Variables: Explicit Lists

- Enclose values within brackets » $\mathrm{A}=$ [3.5];
- Values are typically entered by row, with rows separated by semicolons »c=[-1,0,0; 1,-1, $0 ; 0,0,2]$;
- Omitting the final semicolon causes MATLAB to automatically print the matrix value

$$
\geqslant C=\lceil-1,0,0 ; 1,-1,0 ; 0,0,2]
$$

$$
\mathbf{c}=
$$

$\left.\begin{array}{rrl}-1 & 0 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 2\end{array}\right\}$

Automatic
output

- Each row can be listed on a separate line
» $b=[-1,0,1$
1, 2, 1
3, 1, 2
4, 3, 4];
- Long rows can be continued on the next line through the use of a comma and three periods (an ellipsis)
" $\mathrm{F}=[1,52,64,197,42,-42, \ldots$ $55,82,22,109]$
- Elements of a matrix can be changed individually by referring to a specific location
- If $S=[5,6,4] \ldots$
- ...we can change the second element of S from 6 to 8 by issuing the command $S(2)=8$
- We can define a matrix using previously defined matrices.

For example, if $S=[5,6,4]$, we can do the following
" $B=\left[\begin{array}{lll}3 & \mathrm{~S} & 2\end{array}\right]$

MATLAB Environment

Saving and Loading Individual Variables

- .mat files are the default format used when issuing the save command
- Compact format which conserves disk space
- Cannot be easily exported to other application software
- General form of the save command
- save <fname> <vlist> -option1 -option2..., etc.
- Examples:

Operation	MATLAB Syntax
Save variable m in MATLAB file named file.mat	save file m
Save variable m in file named file.dat using 8 digit precision/text format	save file.dat m-ascii
Save variable m in file named file.dat using 16 digit precision/text format	save file.dat m-ascii -double
Save variable m in file named file.dat using 16 digit precision/text format with individual elements delimited by tabs	save file.dat m-ascii -double -tabs

- ASCII (text) files can be viewed, modified, or prepared using programs like WordPad or NotePad in the Windows environment, or vi in the UNIX environment
- ASCII files are formatted such that each row of a matrix is contained on a separate line

MATLAB Environment

The Colon (:) Operator

- Use in place of an index to represent all elements in a row or column of a previously defined matrix

" $\mathrm{R}=\mathrm{S}(4,:$)
R =
$10 \quad 11$
 all elements in fourth row of S

" S			" R=S(4			all elements in fourth row of S
$s=$			R =			
1	2	3	10	11	12	
4	5	6				
7	8	9				
10	11	12				

- Use to generate vectors containing increasing or decreasing sequences of numbers

- Use to select a submatrix from a previously defined matrix

Assume $C=\left[\begin{array}{ccc}-1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 2\end{array}\right] \quad$ Issuing the commands $\begin{array}{ll} & \geqslant \mathbf{c 1}=\mathbf{C}(:, 2: 3) \\ & \geqslant \mathbf{C 2}=\mathbf{C}(3: 4,1: 2)\end{array}$
results in the following matrices: $\mathrm{C} 1=\left[\begin{array}{cc}0 & 0 \\ 1 & 0 \\ -1 & 0 \\ 0 & 2\end{array}\right] \quad \mathrm{C} 2=\left[\begin{array}{cc}1 & -1 \\ 0 & 0\end{array}\right]$

MATLAB Environment

- Transpose Operator: The transpose of $\mathrm{A}=\mathrm{A}^{\prime}$ and represents a new matrix in which the rows of A are transformed into the columns of A^{\prime}

" $a=[4,2,3 ; 2,1,5]$	$\mathrm{a}=$				
		2	3		
		1	5	4	2
				2	1
				3	5

- Empty Matrix: A matrix which does not contain any elements, e.g.

```
# a=[] a =
```

[]

- User Input:
- The input command displays a text string, and waits for a typed response
- Value entered is stored in the specified variable
- Matrices must be entered from the keyboard using the correct syntax
- Note that this command is most useful when running MATLAB scripts (a sequence of MATLAB commands which can be run over and over)

MATLAB Environment

Printing Matrices

- Simplest way: enter the name of the matrix
- Name of the matrix will be repeated
- Contents of the matrix will be printed starting on the next line

```
> a
a =
```

MATLAB
response

- Format commands
- Changes how numbers are displayed
- Your chosen format mode "sticks" until another format command is issued

MATLAB Command	Display Mode	Example
format short	default	15.2345
format long	14 decimals	15.23453333333333
format short e	4 decimals	$1.5235 \mathrm{e}+01$
format long e	15 decimals	$1.523453333333333 \mathrm{e}+01$
format bank	2 decimals	15.23
format +	Prints the sign only (not the value)	+
format compact	Suppresses line feeds	
format loose	Turns off format compact mode	

MATLAB Environment

Printing Matrices (continued)

- The disp command
- Command argument is enclosed in parentheses
- Matrix: $\operatorname{disp}(A)$
- Character string: disp(' A ')
- Prints the command argument (matrix value or text) on the screen:

- The fprintf command
- Similar to the fprintf() function in ANSI C
- Allows precise specification of the print format and line spacing when printing both text and matrix values

MATLAB Environment

Simple $\underline{X Y} \underline{\text { Plots }}$

- Allows the generation of scatter (x vs. y) plots
- Column matrices are used to hold each set of values
- The plot can be enhanced by adding a grid, titles and axis labels
- General format: $\operatorname{plot}(x, y)$ where x and y are each m element vectors
- Line plots (y versus index) can be generated by including only one argument in the plot command
- Example:
» $a=[1 ; 2 ; 3 ; 4 ; 5 ; 6 ; 7]$;
" $b=[1 ; 4 ; 9 ; 16 ; 25 ; 36 ; 49]$;
» plot(a,b),title('Squares'),xlabel('number'),ylabel('number squared'),qrid

MATLAB Environment

Simple $\underline{X Y}$ Plots (continued)

- MATLAB plot commands

Plot Command	Result
plot (x, y)	Generates a scatter plot of x vs. y on linear axes
semilog$x(x, y)$	Generates a scatter plot of x vs. y using a logarithmic scale for x and a linear scale for y
semilogy (x, y)	Generates a scatter plot of x vs. y using a linear scale for x and a logarithmic scale for y
$\log \log (x, y)$	Generates a scatter plot of x vs. y using a logarithmic scale for both x and y

- Multiple plots on one axis (three methods)
- hold allows a second curve to be plotted on existing axes
- Include multiple sets of arguments in a plot command, e.g. $\operatorname{plot}(x, y, w, z)$. Here, x vs. y and w vs. z curves will be generated on the same plot
- Use $\operatorname{plot}(A)$, where A is a matrix. A separate curve will be plotted for each column

- Plot Style

- plot(x, y,' 0 ') plots $x-y$ points using the circle (o) mark. Other line and point options include the point(.), plus(+), $\operatorname{star}\left({ }^{*}\right), x-m a r k(x)$, dashed(--), and dotted(:)
- The axis command allows the current axis scaling to be frozen for subsequent plots.
- axis(v) allows user-specified plot ranges. v is a four element vector containing scaling values [xmin,xmax,ymin,ymax]

MATLAB Environment

Scalar and Array Operations

- MATLAB scalar calculations obey standard algebraic precedence (order of operations)
- Arithmetic operations between two scalars a and b :

Operation	MATLAB Syntax
addition	$a+b$
subtraction	$a-b$
multiplication	$a^{*} b$
division	a / b
exponentiation	$a^{\wedge} b$

- Array operations: Element-by-element operations between two matrices of the same size
- Note that array operations and matrix operations are not equivalent!

Operation	MATLAB Syntax
addition	$a+b$
subtraction	$a-b$
multiplication	$a .^{*} b$
division	$a \cdot / b$
exponentiation	$a .^{\wedge} b$

- Example array operation:

A $=$

3	4	2
2	1	5

3.0000
1.0000
0.8006
2.0908
6.0009
10.000
5.0096

MATLAB Environment

Special Scalar Values

- Predefined values which are available for use by MATLAB
- Redefining these values in MATLAB could cause unexpected results

Special Scalar	What it Represents
$p i$	Π
i, j	imaginary operator (square root of minus one)
Inf	infinity
NaN	Not a number. Occurs when the results of a calculation are undefined
clock	Current time
date	Current date
eps	The smallest amount by which two values can differ in the computer
ans	A computed value not assigned to a particular variable

Special Matrices

MATLAB Matrix Command	Result
zeros (m, n)	Generates an m by n matrix of all zeros
ones (m, n)	Generates an m by n matrix of all ones
$\operatorname{zeros}(m)$	Generates an m by m square matrix of zeros
ones (m)	Generates an m by m square matrix of ones
eye (m)	Generates an m by m identity matrix $\operatorname{diag}(A)$ Puts the diagonal elements of matrix A into a column vector
$\operatorname{diag}(V, 0)$	Creates a matrix with the elements of vector V on the diagonals

MATLAB Environment

Control System Toolbox

- Toolboxes are available for MATLAB to simplify specific tasks. We will use the Control System Toolbox in this class
- Useful functions in the toolbox

Function call	Result
tf(num,den)	Creates a system model with the specified transfer function
impulse(sys)	Calculates the impulse response of the system model sys
step(sys)	Calculates the step response of the system model sys
Isim(sys,u,t)	Calculates the response of the system model sys to an arbitrary input signal
bode(sys)	Bode plot for the system model sys

Other Useful Functions

Function call	Result
residue(num,den)	Calculates the partial fraction expansion of the specified ratio of polynomials
$\operatorname{conv}(a, b)$	Polynomial multiplication
roots (a)	Calculates the roots of a polynomial

