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Objectives

The multilayer networks discussed in Chapters 11 and 12 represent one 
type of neural network structure for function approximation and pattern 
recognition. As we saw in Chapter 11, multilayer networks with sigmoid 
transfer functions in the hidden layers and linear transfer functions in the 
output layer are universal function approximators. In this chapter we will 
discuss another type of universal approximation network, the radial basis 
function network. This network can be used for many of the same applica-
tions as multilayer networks.

This chapter will follow the structure of Chapter 11. We will begin by dem-
onstrating, in an intuitive way, the universal approximation capabilities of 
the radial basis function network. Then we will describe three different 
techniques for training these networks. They can be trained by the same 
gradient-based algorithms discussed in Chapters 11 and 12, with deriva-
tives computed using a form of backpropagation. However, they can also be 
trained using a two-stage process, in which the first layer weights are com-
puted independently from the weights in the second layer. Finally, these 
networks can be built in an incremental way - one neuron at a time.
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Theory and Examples

The radial basis function network is related to the multilayer perceptron 
network of Chapter 11. It is also a universal approximator and can be used 
for function approximation or pattern recognition. We will begin this chap-
ter with a description of the network and a demonstration of its abilities for 
function approximation and pattern recognition.

The original work in radial basis functions was performed by Powell and 
others during the 1980’s [Powe87]. In this original work, radial basis func-
tions were used for exact interpolation in a multidimensional space. In oth-
er words, the function created by the radial basis interpolation was 
required to pass exactly through all targets in the training set. The use of 
radial basis functions for exact interpolation continues to be an important 
application area, and it is also an active area of research. 

For our purposes, however, we will not be considering exact interpolation. 
Neural networks are often used on noisy data, and exact interpolation often 
results in overfitting when the training data is noisy, as we discussed in 
Chapter 13. Our interest is in the use of radial basis functions to provide 
robust approximations to unknown functions based on generally limited 
and noisy measurements. Broomhead and Lowe [BrLo88] were the first to 
develop the radial basis function neural network model, which produces a 
smooth interpolating function. No attempt is made to force the network re-
sponse to exactly match target outputs. The emphasis is on producing net-
works that will generalize well to new situations.

In the next section we will demonstrate the capabilities of the radial basis 
function neural network. In the following sections we will describe proce-
dures for training these networks. 

Radial Basis Network
The radial basis network is a two-layer network. There are two major dis-
tinctions between the radial basis function (RBF) network and a two layer 
perceptron network. First, in layer 1 of the RBF network, instead of per-
forming an inner product operation between the weights and the input 
(matrix multiplication), we calculate the distance between the input vector 
and the rows of the weight matrix. (This is similar to the LVQ network 
shown in Figure 14.13.) Second, instead of adding the bias, we multiply by 
the bias. Therefore, the net input for neuron i in the first layer is calculated 
as follows:

. (17.1)

RBF

ni
1 p w1

i– bi
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Each row of the weight matrix acts as a center point - a point where the net 
input value will be zero. The bias performs a scaling operation on the trans-
fer (basis) function, causing it to stretch or compress. 

We should note that most papers and texts on RBF networks use the terms 
standard deviation, variance or spread constant, rather than bias. We have 
used the bias in order to maintain a consistency with other networks in this 
text. This is simply a matter of notation and pedagogy. The operation of the 
network is not affected. When a Gaussian transfer function is used, the 
bias is related to the standard deviation as follows: .

The transfer functions used in the first layer of the RBF network are dif-
ferent than the sigmoid functions generally used in the hidden layers of 
multilayer perceptrons (MLP). There are several different types of transfer 
function that can be used (see [BrLo88]), but for clarity of presentation we 
will consider only the Gaussian function, which is the one most commonly 
used in the neural network community. It is defined as follows

, (17.2)

and it is plotted in Figure 17.1. 

Figure 17.1  Gaussian Basis Function

A key property of this function is that it is local. This means that the output 
is close to zero if you move very far in either direction from the center point. 
This is in contrast to the global sigmoid functions, whose output remains 
close to 1 as the net input goes to infinity. 

The second layer of the RBF network is a standard linear layer:

(17.3)
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Figure 17.2 shows the complete RBF network.

Figure 17.2  Radial Basis Network

Function Approximation
This RBF network has been shown to be a universal approximator 
[PaSa93], just like the MLP network. To illustrate the capability of this 
network, consider a network with two neurons in the hidden layer, one out-
put neuron, and with the following default parameters:

, , , ,

, , .

The response of the network with the default parameters is shown in Fig-
ure 17.3, which plots the network output  as the input  is varied over 
the range .

Notice that the response consists of two hills, one for each of the Gaussian 
neurons (basis functions) in the first layer. By adjusting the network pa-
rameters, we can change the shape and location of each hill, as we will see 
in the following discussion. (As you proceed through this example, it may 
be helpful to compare the response of this sample RBF network with the 
response of the sample MLP network in Figure 11.5.)

S
1
x 1 S

2
x 1

S
1
x 1 S

2
x 1

S
1
x 1 S

2
x 1

R x 1
1

S
1
x R

S
2
x S

1

S
1

S
2

n
1

n
2

p
1

a
1

a
2

W
1

W
2

b
1

b
21 1

R
1

Inputs Radial Basis Layer

a radbas b
1 1 1

i i
= (|| - || )w p i

Linear Layer

a W a b
2 2 1 2
= +

||dist||

.*

w1 1,
1 1–= w2 1,

1 1= b1
1 2= b2

1 2=

w1 1,
2 1= w1 2,

2 1= b2 0=

a2 p
2– 2,[ ]



Radial Basis Network

17-5

17

Figure 17.3  Default Network Response

Figure 17.4 illustrates the effects of parameter changes on the network re-
sponse. The blue curve is the nominal response. The other curves corre-
spond to the network response when one parameter at a time is varied over 
the following ranges:

, , , . (17.4)

Figure 17.4  Effect of Parameter Changes on Network Response

Figure 17.4 (a) shows how the network biases in the first layer can be used 
to change the width of the hills - the larger the bias, the narrower the hill. 
Figure 17.4 (b) illustrates how the weights in the first layer determine the 
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location of the hills; there will be a hill centered at each first layer weight. 
For multidimensional inputs there will be a hill centered at each row of the 
weight matrix. For this reason, each row of the first layer weight matrix is 
often called the center for the corresponding neuron (basis function). 

Notice that the effects of the weight and the bias in first layer of the RBF 
network are much different than for the MLP network, which was shown 
in Figure 11.6. In the MLP network, the sigmoid functions create steps. 
The weights change the slopes of the steps, and the biases change the loca-
tions of the steps.

Figure 17.4 (c) illustrates how the weights in the second layer scale the 
height of the hills. The bias in the second layer shifts the entire network 
response up or down, as can be seen in Figure 17.4 (d). The second layer of 
the RBF network is the same type of linear layer used in the MLP network 
of Figure 11.6, and it performs a similar function, which is to create a 
weighted sum of the outputs of the layer 1 neurons.

This example demonstrates the flexibility of the RBF network for function 
approximation. As with the MLP, it seems clear that if we have enough 
neurons in the first layer of the RBF network, we can approximate virtual-
ly any function of interest, and [PaSa93] provides a mathematical proof 
that this is the case. However, although both MLP and RBF networks are 
universal approximators, they perform their approximation in different 
ways. For the RBF network, each transfer function is only active over a 
small region of the input space - the response is local. If the input moves 
far from a given center, the output of the corresponding neuron will be close 
to zero. This has consequences for the design of RBF networks. We must 
have centers adequately distributed throughout the range of the network 
inputs, and we must select biases in such a way that all of the basis func-
tions overlap in a significant way. (Recall that the biases change the width 
of each basis function.) We will discuss these design considerations in more 
detail in later sections.

To experiment with the response of this RBF network, use the MATLAB® 
Neural Network Design Demonstration RBF Network Function (nnd17nf).

Pattern Classification
To illustrate the capabilities of the RBF network for pattern classification, 
consider again the classic exclusive-or (XOR) problem. The categories for 
the XOR gate are

Category 1: , Category 2: .
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The problem is illustrated graphically in the figure to the left. Because the 
two categories are not linearly separable, a single-layer network cannot 
perform the classification.

RBF networks can classify these patterns. In fact, there are many different 
RBF solutions. We will consider one solution that demonstrates in a simple 
way how to use RBF networks for pattern classification. The idea will be to 
have the network produce outputs greater than zero when the input is near 
patterns  or , and outputs less than zero for all other inputs. (Note 
that the procedures we will use to design this example network are not 
suitable for complex problems, but they will help us illustrate the capabil-
ities of the RBF network.)

From the problem statement, we know that the network will need to have 
two inputs and one output. For simplicity, we will use only two neurons in 
the first layer (two basis functions), since this will be sufficient to solve the 
XOR problem. As we discussed earlier, the rows of the first-layer weight 
matrix will create centers for the two basis functions. We will choose the 
centers to be equal to the patterns  and . By centering a basis function 
at each pattern, we can produce maximum network outputs there. The first 
layer weight matrix is then

. (17.5)

The choice of the bias in the first layer depends on the width that we want 
for each basis function. For this problem, we would like the network func-
tion to have two distinct peaks at  and . Therefore, we don’t want the 
basis functions to overlap too much. The centers of the basis functions are 
each a distance of  from the origin. We want the basis function to drop 
significantly from its peak in this distance. If we use a bias of 1, we would 
get the following reduction in that distance:

. (17.6)

Therefore, each basis function will have a peak of 1 at the centers, and will 
drop to 0.1353 at the origin. This will work for our problem, so we select the 
first layer bias vector to be

. (17.7)

The original basis function response ranges from 0 to 1 (see Figure 17.1). 
We want the output to be negative for inputs much different than  and 

, so we will use a bias of -1 for the second layer, and we will use a value 
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of 2 for the second layer weights, in order to bring the peaks back up to 1. 
The second layer weights and biases then become

, . (17.8)

For the network parameter values given in (17.5), (17.7) and (17.8), the net-
work response is shown in Figure 17.5. This figure also shows where the 
surface intersects the plane at , which is where the decision takes 
place. This is also indicated by the contours shown underneath the surface. 
These are the function contours where . They are almost circles that 
surround the  and  vectors. This means that the network output will 
be greater than 0 only when the input vector is near the  and  vectors.

Figure 17.5  Example 2-Input RBF Function Surface

Figure 17.6 illustrates more clearly the decision boundaries. Whenever the 
input falls in the blue regions, the output of the network will be greater 
than zero. Whenever the network input falls outside the blue regions, the 
network output will be less than zero.
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Figure 17.6  RBF Example Decision Regions

This network, therefore, classifies the patterns correctly. It is not the best 
solution, in the sense that it does not always assign input patterns to the 
closest prototype vector, unlike the MLP solution shown in Figure 11.2. 
You will notice that the decision regions for this RBF network are circles, 
unlike the linear boundaries that we see in single layer perceptrons. The 
MLP can put linear boundaries together to create arbitrary decision re-
gions. The RBF network can put circular boundaries together to create ar-
bitrary decision regions. In this problem, the linear boundaries are more 
efficient. Of course, when many neurons are used, and the centers are close 
together, the elementary RBF boundaries are no longer purely circular, 
and the elementary MLP boundaries are no longer purely linear. However, 
associating circular boundaries with RBF networks and linear boundaries 
with MLP networks can be helpful in understanding their operation as pat-
tern classifiers.

To experiment with the RBF network for pattern classification, use the 
MATLAB® Neural Network Design Demonstration RBF Pattern Classification 
(nnd17pc).

Now that we see the power of RBF networks for function approximation 
and pattern recognition, the next step is to develop general training algo-
rithms for these networks.

Global vs. Local
Before we discuss the training algorithms, we should say a final word about 
the advantages and disadvantages of the global transfer functions used by 
the MLP networks and the local transfer functions used by the RBF net-
works. The MLP creates a distributed representation, because all of the 
transfer functions overlap in their activity. At any given input value, many 
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sigmoid functions in the first layer will have significant outputs. They must 
sum or cancel in the second layer in order to produce the appropriate re-
sponse at each point. In the RBF network, each basis function is only active 
over a small range of the input. For any given input, only a few basis func-
tions will be active.

There are advantages and disadvantages to each approach. The global ap-
proach tends to require fewer neurons in the hidden layer, since each neu-
ron contributes to the response over a large part of the input space. For the 
RBF network, however, basis centers must be spread throughout the range 
of the input space in order to provide an accurate approximation. This leads 
to the problem of the “curse of dimensionality,” which we will discuss in the 
next section. Also, if more neurons, and therefore more parameters, are 
used, then there is a greater likelihood that the network will overfit the 
training data and fail to generalize well to new situations.

On the other hand, the local approach generally leads to faster training, es-
pecially when the two-stage algorithms, which will be discussed in the next 
section, are used. Also, the local approach can be very useful for adaptive 
training, in which the network continues to be incrementally trained while 
it is being used, as in adaptive filters (nonlinear versions of the filters in 
Chapter 10) or controllers. If, for a period of time, training data only ap-
pears in a certain region of the input space, then a global representation 
will tend to improve its accuracy in those regions at the expense of its rep-
resentation in other regions. Local representations will not have this prob-
lem to the same extent. Because each neuron is only active in a small region 
of the input space, its weights will not be adjusted if the input falls outside 
that region.

Training RBF Networks
Unlike the MLP network, which is almost always trained by some gradi-
ent-based algorithm (steepest descent, conjugate gradient, Levenberg-
Marquardt, etc.), the RBF network can be trained by a variety of approach-
es. 

RBF networks can be trained using gradient-based algorithms. However, 
because of the local nature of the transfer function and the way in which 
the first layer weights and biases operate, there tend to be many more un-
satisfactory local minima in the error surfaces of RBF networks than in 
those of MLP networks. For this reason, gradient-based algorithms are of-
ten unsatisfactory for the complete training of RBF networks. They are 
used on occasion, however, for fine-tuning of the network after it has been 
initially trained using some other method. Later in this chapter we will dis-
cuss the modifications to the backpropagation equations in Chapter 11 that 
are needed to compute the gradients for RBF networks.

The most commonly used RBF training algorithms have two stages, which 
treat the two layers of the RBF network separately. The algorithms differ 
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mainly in how the first layer weights and biases are selected. Once the first 
layer weights and biases have been selected, the second layer weights can 
be computed in one step, using a linear least-squares algorithm. We will 
discuss linear least squares in the next section.

The simplest of the two-stage algorithms arranges the centers (first layer 
weights) in a grid pattern throughout the input range and then chooses a 
constant bias so that the basis functions have some degree of overlap. This 
procedure is not optimal, because the most efficient approximation would 
place more basis functions in regions of the input space where the function 
to be approximated is most complex. Also, for many practical cases the full 
range of the input space is not used, and therefore many basis functions 
could be wasted. One of the drawbacks of the RBF network, especially 
when the centers are selected on a grid, is that they suffer from the curse 
of dimensionality. This means that as the dimension of the input space in-
creases, the number of basis functions required increases geometrically. 
For example, suppose that we have one input variable, and we specify a 
grid of 10 basis functions evenly spaced across the range of the input vari-
able. Now increase the number of input variables to 2. To maintain the 
same grid coverage for both input variables, we would need 102, or 100 ba-
sis functions.

Another method for selecting the centers is to select some random subset 
of the input vectors in the training set. This ensures that basis centers will 
be placed in areas where they will be useful to the network. However, due 
to the randomness of the selection, this procedure is not optimal. A more 
efficient approach is to use a method such as the Kohonen competitive lay-
er or the feature map, described in Chapter 16, to cluster the input space. 
The cluster centers then become basis function centers. This ensures that 
the basis functions are placed in regions with significant activity. We will 
discuss this method in a later section.

A final procedure that we will discuss for RBF training is called orthogonal 
least squares. It is based on a general method for building linear models 
called subset selection. This method starts with a large number of possible 
centers - typically all of the input vectors from the training data. At each 
stage of the procedure, it selects one center to add to the first layer weight. 
The selection is based on how much the new neuron will reduce the sum 
squared error. Neurons are added until some criteria is met. The criteria is 
typically chosen to maximize the generalization capability of the network.

Linear Least Squares
In this section we will assume that the first layer weights and biases of the 
RBF network are fixed. This can be done by fixing the centers on a grid, or 
by randomly selecting the centers from the input vectors in the training 
data set (or by using the clustering method which is described in a later sec-
tion). When the centers are randomly selected, all of the biases can be se-
lected using the following formula [Lowe89]:

Curse of Dimensionali
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, (17.9)

where  is the maximum distance between neighboring centers. This is 
designed to ensure an appropriate degree of overlap between the basis 
functions. Using this method, all of the biases have the same value. There 
are other methods which use different values for each bias. We will discuss 
one such method later, in the section on clustering.

Once the first layer parameters have been set, the training of the second 
layer weights and biases is equivalent to training a linear network, as in 
Chapter 10. For example, consider that we have the following training 
points

, (17.10)

where  is an input to the network, and  is the corresponding target 
output. The output of the first layer for each input  in the training set 
can be computed as

, (17.11)

. (17.12)

Since the first layer weights and biases will not be adjusted, the training 
data set for the second layer then becomes

. (17.13)

The second layer response is linear:

. (17.14)

We want to select the weights and biases in this layer to minimize the sum 
square error performance index over the training set:

(17.15)

Our derivation of the solution to this linear least squares problem will fol-
low the linear network derivation starting with Eq. (10.6). To simplify the 
discussion, we will assume a scalar target, and we will lump all of the pa-
rameters we are adjusting, including the bias, into one vector:
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. (17.16)

Similarly, we include the bias input “1” as a component of the input vector

. (17.17)

Now the network output, which we usually write in the form

, (17.18)

can be written as

. (17.19)

This allows us to conveniently write out an expression for the sum square 
error:

. (17.20)

To express this in matrix form, we define the following matrices:

, , . (17.21)

The error can now be written

, (17.22)

and the performance index become

. (17.23)

If we use regularization, as we discussed in Chapter 13, to help in prevent-
ing overfitting, we obtain the following form for the performance index:
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, (17.24)

where  from Eq. (13.4). Let’s expand this expression to obtain

(17.25)

Take a close look at Eq. (17.25), and compare it with the general form of the 
quadratic function, given in Eq. (8.35) and repeated here:

. (17.26)

Our performance function is a quadratic function, where

,  and . (17.27)

From Chapter 8 we know that the characteristics of the quadratic function 
depend primarily on the Hessian matrix . For example, if the eigenvalues 
of the Hessian are all positive, then the function will have one unique glo-
bal minimum. 

In this case the Hessian matrix is , and it can be shown that 
this matrix is either positive definite or positive semidefinite (see Exercise 
E17.4), which means that it can never have negative eigenvalues. We are 
left with two possibilities. If the Hessian matrix has only positive eigenval-
ues, the performance index will have one unique global minimum (see Fig-
ure 8.7). If the Hessian matrix has some zero eigenvalues, the performance 
index will either have a weak minimum (see Figure 8.9) or no minimum 
(see Problem P8.7), depending on the vector . In this case, it must have a 
minimum, since  is a sum square function, which cannot be negative.

Now let’s locate the stationary point of the performance index. From our 
previous discussion of quadratic functions in Chapter 8, we know that the 
gradient is

. (17.28)

The stationary point of  can be found by setting the gradient equal to 
zero:

  . (17.29)
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. (17.30)

If the Hessian matrix is positive definite, there will be a unique stationary 
point, which will be a strong minimum:

(17.31)

Let’s demonstrate this procedure with a simple problem. 

Example

To illustrate the least squares algorithm, let’s choose a network and apply 
it to a particular problem. We will use an RBF network with three neurons 
in the first layer to approximate the following function

 for . (17.32)

To obtain our training set we will evaluate this function at six values of :

. (17.33)

This produces the targets

. (17.34)

We will choose the basis function centers to be spaced equally throughout 
the input range: -2, 0 and 2. For simplicity, we will choose the bias to be the 
reciprocal of the spacing between points. This produces the following first 
layer weight and bias.

, . (17.35)

The next step is to compute the output of the first layer, using the following 
equations.

, (17.36)

. (17.37)

This produces the following  vectors
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(17.38)

We can use Eq. (17.17) and Eq. (17.21) to create the U and t matrices

, (17.39)

. (17.40)

The next step is to solve for the weights and biases in the second layer us-
ing Eq. (17.30). We will begin with the regularization parameter set to zero.

(17.41)

The second layer weight and bias are therefore

, . (17.42)

Figure 17.7 illustrates the operation of this RBF network. The blue line 
represents the RBF approximation, and the circles represent the six data 
points. The dotted lines in the upper axis represent the individual basis 
functions scaled by the corresponding weights in the second layer (includ-
ing the constant bias term). The sum of the dotted lines will produce the 
blue line. In the small axis at the bottom, you can see the unscaled basis 
functions, which are the outputs of the first layer.
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Figure 17.7  RBF Sine Approximation

The RBF network design process can be sensitive to the choice of the center 
locations and the bias. For example, if we select six basis functions and six 
data points, and if we choose the first layer biases to be 8, instead of 0.5, 
then the network response will be as shown in Figure 17.8. The spread of 
the basis function decreases as the inverse of the bias. When the bias is this 
large, there is not sufficient overlap in the basis functions to provide a 
smooth approximation. We match each data point exactly. However, be-
cause of the local nature of the basis function, the approximation to the 
true function is not accurate between the training data points.

Figure 17.8  RBF Response with Bias Too Large
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To experiment with the linear least squares fitting, use the MATLAB® Neu-
ral Network Design Demonstration RBF Linear Least Squares (nnd17lls).

Orthogonal Least Squares
In the previous section we assumed that the weights and biases in the first 
layer were fixed. The centers were fixed on a grid, or were randomly select-
ed from the input vectors in the training data set. In this section we consid-
er a different approach for selecting the centers. We will assume that there 
exists a number of potential centers. These centers could include the entire 
set of input vectors in the training set, vectors chosen in a grid pattern, or 
vectors chosen by any other procedure one might think of. We will then se-
lect vectors one at a time from this set of potential centers, until the net-
work performance is satisfactory. We will build up the network one neuron 
at a time.

The basic idea behind this method comes from statistics, and it is called 
subset selection [Mill90]. The general objective of subset selection is to 
choose an appropriate subset of independent variables to provide the most 
efficient prediction of a target dependent variable. For example, suppose 
that we have 10 independent variables, and we want to use them to predict 
our target dependent variable. We want to create the simplest predictor 
possible, so we want to use the minimum number of independent variables 
for the prediction. Which subset of the 10 independent variables should we 
use? The optimal approach, called an exhaustive search, tries all combina-
tions of subsets and finds the smallest one that provides satisfactory per-
formance. (We will define later what we mean by satisfactory 
performance.)

Unfortunately, this strategy is not practical. If we have Q variables in our 
original set, the following expression gives the number of distinct subsets:

. (17.43)

If , this number is 1023. If , the number is more than 1 mil-
lion. We need to have a less expensive strategy than the exhaustive search. 
There are several suboptimal procedures. They are not guaranteed to find 
the optimal subset, but they require significantly less computation. One 
procedure is called forward selection. This method begins with an empty 
model and then adds variables one at a time. At each stage, we add the in-
dependent variable that provides the largest reduction in squared error. 
We stop adding variables when the performance is adequate. Another ap-
proach, called backward elimination, starts with all independent variables 
selected for the model. At each stage we eliminate the variable that would 
cause the least increase in the squared error. The process continues until 
the performance is inadequate. There are other approaches which combine 

Subset Selection

Q!
q! Q q–( )!
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forward selection and backward elimination, so that variables can be added 
and deleted at each iteration.

Any of the standard subset selection techniques can be used for selecting 
RBF centers. For purposes of illustration, we will consider one specific form 
of forward selection, called orthogonal least squares [ChCo91]. Its main 
feature is that it efficiently calculates the error reduction provided by the 
addition of each potential center to the RBF network.

To develop the orthogonal least squares algorithm, we begin with Eq. 
(17.22), repeated here in slightly different form:

. (17.44)

We will use our standard notation for matrix rows and columns to individ-
ually identify both the rows and the columns of the matrix U:

(17.45)

Here each row of the matrix  represents the output of layer 1 of the RBF 
network for one input vector from the training set. There will be a column 
of the matrix U for each neuron (basis function) in layer 1 plus the bias term 
( ). Note that for the OLS algorithm, the potential centers for the 
basis functions are often chosen to be all of the input vectors in the training 
set. In this case,  will equal , since the constant “1” for the bias term 
is included in , as shown in Eq. (17.17).

Eq. (17.44) is in the form of a standard linear regression model. The matrix 
 is called the regression matrix, and the columns of  are called the re-

gressor vectors.

The objective of OLS is to determine how many columns of  (numbers of 
neurons or basis functions) should be used. The first step is to calculate 
how much each potential column would reduce the squared error. The prob-
lem is that the columns are generally correlated with each other, and so it 
is difficult to determine how much each individual column would reduce 
the error. For this reason, we need to first orthogonalize the columns. Or-
thogonalizing the columns means that we can decompose  as follows:

, (17.46)

where  is an upper triangular matrix, with ones on the diagonal:
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, (17.47)

and  is a matrix with orthogonal columns . This means that  has 
the following properties

(17.48)

Now Eq. (17.44) can be written

, (17.49)

where

. (17.50)

The least squares solution for Eq. (17.49) is

, (17.51)

and because  is diagonal, the elements of  can be computed

. (17.52)

From  we can compute  using Eq. (17.50). Since  is upper-triangu-
lar, Eq. (17.50) can be solved by back-substitution and does not require a 
matrix inversion.

There are a number of ways to obtain the orthogonal vectors , but we 
will use the Gram-Schmidt orthogonalization process of Eq. (5.20), starting 
with the original columns of .

, (17.53)
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, (17.54)

where

, . (17.55)

Now let’s see how orthogonalizing the columns of  enables us to efficient-
ly calculate the squared error contribution of each basis vector. Using Eq. 
(17.49), the total sum square value of the targets is given by

. (17.56)

Consider the second term in the sum:

. (17.57)

If we use the optimal  from Eq. (17.51), we find

. (17.58)

Therefore the total sum square value from Eq. (17.56) becomes

. (17.59)

The first term on the right of Eq. (17.59) is the contribution to the sum 
squared value explained by the regressors, and the second term is the re-
maining sum squared value that is not explained by the regressors. There-
fore, regressor (basis function)  contributes 

(17.60)

to the squared value. This also represents how much the squared error can 
be reduced by including the corresponding basis function in the network. 
We will use this number, after normalizing by the total squared value, to 
determine the next basis function to include at each iteration:

. (17.61)

This number always falls between zero and one.
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Now let’s put all these ideas together into an algorithm for selecting cen-
ters.

The OLS Algorithm

To begin the algorithm, we start with all potential basis functions included 
in the regression matrix . (As we explained below Eq. (17.45), if all input 
vectors in the training set are to be considered potential basis function cen-
ters, then the  matrix will be  by .) This matrix represents only 
potential basis functions, since we start with no basis functions included in 
the network.

The first stage of the OLS algorithm consists of the following three steps, 
for :

, (17.62)

, (17.63)

. (17.64)

We then select the basis function that creates the largest reduction in er-
ror:

, (17.65)

. (17.66)

The remaining iterations of the algorithm continue as follows (for iteration 
k):

For , , ..., 
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, (17.68)
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, (17.69)

, (17.70)

, (17.71)

, . (17.72)

. (17.73)

The iterations continue until some stopping criterion is met. One choice of 
stopping criterion is

, (17.74)

where  is some small number. However, if  is chosen too small, we can 
have overfitting, since the network will become too complex. An alternative 
is to use a validation set, as we discussed in the chapter on generalization. 
We would stop when the error on the validation set increased.

After the algorithm has converged, the original weights  can be computed 
from the transformed weights  by using Eq. (17.50). This produces, by 
back substitution,

, , (17.75)

where  is the final number of weights and biases in the second layer (ad-
justable parameters).

To experiment with orthogonal least squares learning, use the MATLAB® 
Neural Network Design Demonstration RBF Orthogonal Least Squares 
(nnd17ols).

Clustering
There is another approach [MoDa89] for selecting the weights and biases 
in the first layer of the RBF network. This method uses the competitive net-
works described in Chapter 16. Recall that the competitive layer of Ko-
honen (see Figure 14.2) and the Self Organizing Feature Map (see Figure 
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14.9) perform a clustering operation on the input vectors of the training set. 
After training, the rows of the competitive networks contain prototypes, or 
cluster centers. This provides an approach for locating centers and select-
ing biases for the first layer of the RBF network. If we take the input vec-
tors from the training set and perform a clustering operation on them, the 
resulting prototypes (cluster centers) could be used as centers for the RBF 
network. In addition, we could compute the variance of each individual 
cluster and use that number to calculate an appropriate bias to be used for 
the corresponding neuron.

Consider again the following training set:

. (17.76)

We want to perform a clustering of the input vectors from this training set:

. (17.77)

We will train the first layer weights of the RBF network to perform a clus-
tering of these vectors, using the Kohonen learning rule of Eq. (14.13), and 
repeated here:

, (17.78)

where  is one of the input vectors in the training set, and  is 
the weight vector that was closest to . (We could also use other cluster-
ing algorithms, such as the Self Organizing Feature Map, or the k-means 
clustering algorithm, which was suggested in [MoDa89].) As described in 
Chapter 16, Eq. (17.78) is repeated until the weights have converged. The 
resulting converged weights will represent cluster centers of the training 
set input vectors. This will insure that we will have basis functions located 
in areas where input vectors are most likely to occur.

In addition to selecting the first layer weights, the clustering process can 
provide us with a method for determining the first layer biases. For each 
neuron (basis function), locate the  input vectors from the training set 
that are closest to the corresponding weight vector (center). Then compute 
the average distance between the center and its neighbors.

(17.79)

where  is the input vector that closest to , and is  the next closest 
input vector. From these distances, [MoDa89] recommends setting the first 
layer biases as follows:
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. (17.80)

Therefore, when a cluster is wide, the corresponding basis function will be 
wide as well. Notice that in this case each bias in the first layer will be dif-
ferent. This should provide a network that is more efficient in its use of ba-
sis functions than a network with equal biases.

After the weights and biases of the first layer are determined, linear least 
squares is used to find the second layer weights and biases.

There is a potential drawback to the clustering method for designing the 
first layer of the RBF network. The method only takes into account the dis-
tribution of the input vectors; it does not consider the targets. It is possible 
that the function we are trying to approximate is more complex in regions 
for which there are fewer inputs. For this case, the clustering method will 
not distribute the centers appropriately. On the other hand, one would 
hope that the training data is located in regions where the network will be 
most used, and therefore the function approximation will be most accurate 
in those areas.

Nonlinear Optimization
It is also possible to train RBF networks in the same manner as MLP net-
works - using nonlinear optimization techniques, in which all weights and 
biases in the network are adjusted at the same time. These methods are not 
generally used for the full training of RBF networks, because these net-
works tend to have many more unsatisfactory local minima in their error 
surfaces. However, nonlinear optimization can be used for the fine-tuning 
of the network parameters, after initial training by one of the two-stage 
methods we presented in earlier sections.

We will not present the nonlinear optimization methods in their entirety 
here, since they were treated extensively in Chapters 11 and 12. Instead, 
we will simply indicate how the basic backpropagation algorithm for com-
puting the gradient in MLP networks can be modified for RBF networks.

The derivation of the gradient for RBF networks follows the same pattern 
as the gradient development for MLP networks, starting with Eq. (11.9), 
which you may wish to review at this time. Here we will only discuss the 
one step where the two derivations differ. The difference occurs with Eq. 
(11.20). The net input for the second layer of the RBF network has the same 
form as its counterpart in the MLP network, but the first layer net input 
has a different form (as given in Eq. (17.1) and repeated here):

. (17.81)
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If we take the derivative of this function with respect to the weights and 
biases, we obtain

, (17.82)

. (17.83)

This produces the modified gradient equations (compare with Eq. (11.23) 
and Eq. (11.24)) for Layer 1 of the RBF network

, (17.84)

. (17.85)

Therefore, if we look at the summary of the gradient descent backpropaga-
tion algorithm for MLP networks, from Eq. (11.44) to Eq. (11.47), we find 
that the only difference for RBF networks is that we substitute Eq. (17.84) 
and Eq. (17.85) for Eq. (11.46) and Eq. (11.47) when . When  
the original equations remain the same.

To experiment with nonlinear optimization learning, use the MATLAB® 
Neural Network Design Demonstration RBF Nonlinear Optimization 
(nnd17no).

Other Training Techniques
In this chapter we have only touched the surface of the variety of training 
techniques that have been proposed for RBF networks. We have attempted 
to present the principal concepts, but there are many variations. For exam-
ple, the OLS algorithm has been extended to handle multiple outputs 
[ChCo92] and regularized performance indices [ChCh96]. It has also been 
used in combination with a genetic algorithm [ChCo99], which was used to 
select the first layer biases and the regularization parameter. The expecta-
tion maximization algorithm has also been suggested by several authors 
for optimizing the center locations, starting with [Bish91]. [OrHa00] used 
a regression tree approach for center selection. There have also been many 
variations on the use of clustering and on the combination of clustering for 
initialization and nonlinear optimization for fine-tuning. The architecture 
of the RBF network lends itself to many training approaches. 
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Orthogonal Least Squares
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Clustering

Training the weights

Selecting the bias

Nonlinear Optimization
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Solved Problems

P17.1 Use the OLS algorithm, to approximate the following function:

 for .

To obtain our training set we will evaluate this function at five val-
ues of :

.

This produces the targets

.

Perform one iteration of the OLS algorithm. Assume that the in-
puts in the training set are the potential centers and that the bias-
es are all equal to 1.

First, we compute the outputs of the first layer:
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,

.

We can use Eq. (17.17) and Eq. (17.21) to create the U and t matrices:
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1– 0 1 0 1–=
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Now we perform step one of the algorithm:

,

, , , , 

, ,

,

, , , , , 

,

,

, , , , , 

.

We see that the first and fifth centers would produce a 0.0804 reduction in 
the error. This means that the error would be reduced by 8.04%, if the first 
or fifth center were used in a single-neuron first layer. We would typically 
select the first center, since it has the smallest index.

If we were to stop at this point, we would add the first center to the hidden 
layer. Using Eq. (17.75), we would find that 

. Also, , since the bias center, , 
was not selected on the first iteration. Note that if we continue to add neu-
rons in the hidden layer, the first weight will change. This can be seen from 
Eq. (17.75). This equation to find  is only used after all of the  are 
found. Only  will exactly equal .

m1
i( ) ui=

m1
1( )

1.000
0.779
0.368
0.105
0.018

= m1
2( )

0.779
1.000
0.779
0.368
0.105

= m1
3( )

0.368
0.779
1.000
0.779
0.368

= m1
4( )

0.105
0.368
0.779
1.000
0.779

=

m1
5( )

0.018
0.105
0.368
0.779
1.000

= m1
6( )

1.000
1.000
1.000
1.000
1.000

=

h1
i( ) m1

i( )Tt

m1
i( )Tm1

i( )
----------------------=

h1
1( ) 0.317–= h1

2( ) 0.045–= h1
3( ) 0.106= h1

4( ) 0.045–= h1
5( ) 0.317–=

h1
6( ) 0.200–=

o1
i( ) h1

i( )( )
2
m1

i( )Tm1
i( )

tTt
-------------------------------------=

o1
1( ) 0.0804= o1

2( ) 0.0016= o1
3( ) 0.0094= o1

4( ) 0.0016= o1
5( ) 0.0804=

o1
6( ) 0.0667=

w1 1,
2 x1 h1 h1

1( ) 0.317–= = = = b2 0= m1
6( )

xk hk
xn hn
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If we continued the algorithm, the first column would be removed from . 
We would then orthogonalize all remaining columns of  with respect to 

, which was chosen on the first iteration, using Eq. (17.54). It is inter-
esting to note that the error reduction on the second iteration would be 
much higher than the reduction on the first iteration. The sequence of re-
ductions would be 0.0804, 0.3526, 0.5074, 0.0448, 0.0147, 0, and the centers 
would be chosen in the following order: 1, 2, 5, 3, 4, 6. The reason that re-
ductions in later iterations are higher is that it takes a combination of basis 
functions to produce the best approximation. This is why forward selection 
is not guaranteed to produce the optimal combination, which can be found 
with an exhaustive search. Also, notice that the bias is selected last, and it 
produces no reduction in the error. 

P17.2 Figure P17.1 illustrates a classification problem, where Class I vec-
tors are represented by dark circles, and Class II vectors are rep-
resented by light circles. These categories are not linearly 
separable. Design a radial basis function network to correctly clas-
sify these categories.

Figure P17.1  Classification Problem for Problem P17.2

From the problem statement, we know that the network will need to have 
two inputs, and we can use one output to distinguish the two classes. We 
will choose a positive output for Class I vectors, and a negative output for 
Class II vectors. The Class I region is made up of two simple subregions, 
and it appears that two neurons should be sufficient to perform the classi-
fication. The rows of the first-layer weight matrix will create centers for the 
two basis functions, and we will choose each center to be located in the mid-
dle of one subregion. By centering a basis function in each subregion, we 
can produce maximum network outputs there. The first layer weight ma-
trix is then

.

The choice of the biases in the first layer depends on the width that we 
want for each basis function. For this problem, the first basis function 
should be wider than the second. Therefore, the first bias will be smaller 
than the second bias. The boundary formed by the first basis function 

U
U

m1

W1 1 1
2.5 2.5

=
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should have a radius of approximately 1, while the second basis function 
boundary should have a radius of approximately . We want the basis 
functions to drop significantly from their peaks in these distances. If we use 
a bias of 1 for the first neuron and a bias of 2 for the second neuron, we get 
the following reductions within one radius of the centers:

, 

This will work for our problem, so we select the first layer bias vector to be

.

The original basis function response ranges from 0 to 1 (see Figure 17.1). 
We want the output to be negative for inputs outside the decision regions, 
so we will use a bias of -1 for the second layer, and we will use a value of 2 
for the second layer weights, in order to bring the peaks back up to 1. The 
second layer weights and biases then become

, .

For these network parameter values, the network response is shown on the 
right side of Figure P17.2. This figure also shows where the surface inter-
sects the plane at , which is where the decision takes place. This is 
also indicated by the contours shown underneath the surface. These are the 
function contours where . These decision regions are shown more 
clearly on the left side of Figure P17.2.

Figure P17.2  Decision Regions for Problem P17.2
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P17.3 For an RBF network with one input and one neuron in the hidden 
layer, the initial weights and biases are chosen to be 

, , , .

An input/target pair is given to be

.

Perform one iteration of steepest descent backpropagation with 
.

The first step is to propagate the input through the network.

Now we backpropagate the sensitivities using Eq. (11.44) and Eq. (11.45).

 

Finally, the weights and biases are updated using Eq. (11.46) and Eq. 
(11.47) for Layer 2, and Eq. (17.84) and Eq. (17.85) for Layer 1:

,

,

,

.

w1 0( ) 0= b1 0( ) 1= w2 0( ) 2–= b2 0( ) 1=

p 1–=( ) t 1=( )( , )

α 1=

n1 p w1– b1 1 1– 0–( )2 1= = =

a1 radbas n1( ) e n2– e 1– 0.3679= = = =

n2 w2a1 b2+ 2–( ) 0.3679( ) 1+ 0.2642= = =

a2 purelin n2( ) n2 0.2642= = =

e t a2–( ) 1 0.2642( )–( ) 0.7358= = =

s2 2F· 2 n2( ) t a–( )– 2 1[ ] e( )– 2 1[ ]0.7358– 1.4716–= = = =

s1 F· 1 n1( ) W2( )
T
s2 2n1[ ]w2s2 2 1×[ ] 2–( ) 1.4716–( ) 5.8864= = = =

w2 1( ) w2 0( ) αs2 a1( )
T

– 2–( ) 1 1.4716–( ) 0.3679( )– 1.4586–= = =

w1 1( ) w1 0( ) αs1 b1 w1 p–( )

p w1–
-------------------------
⎝ ⎠
⎜ ⎟
⎛ ⎞

– 0( ) 1 5.8864( ) 1 0 1–( )–( )
1– 0–

----------------------------⎝ ⎠
⎛ ⎞– 5.8864–= = =

b2 1( ) b2 0( ) αs2– 1 1 1.4716–( )– 2.4716= = =

b1 1( ) b1 0( ) αs1 p w1–– 1 1 5.8864( ) 1– 0–– 4.8864–= = =
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Epilogue

The radial basis function network is an alternative to the multilayer per-
ceptron network for problems of function approximation and pattern recog-
nition. In this chapter we have demonstrated the operation of the RBF 
network, and we have described several techniques for training the net-
work. Unlike the MLP network, RBF training usually consists of two stag-
es. In the first stage, the weights and biases in the first layer are found. In 
the second stage, which typically involves linear least squares, the second 
layer weights and biases are calculated.
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Exercises

E17.1 Design an RBF network to perform the classification illustrated in Figure 
E17.1. The network should produce a positive output whenever the input 
vector is in the shaded region and a negative output otherwise.

Figure E17.1  Pattern Classification Regions

E17.2 Choose the weights and biases for an RBF network with two neurons in the 
hidden layer and one output neuron, so that the network response passes 
through the points indicated by the blue circles in Figure E17.2. 

Use the MATLAB® Neural Network Design Demonstration RBF Network 
Function (nnd17rbnf) to check your result.

Figure E17.2  Function Approximation Exercise
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E17.3 Consider a 1-2-1 RBF network (two neurons in the hidden layer and one 

output neuron). The first layer weights and biases are fixed as follows:

, .

Assume that the bias in the second layer is fixed at 0 ( ). The training 
set has the following input/target pairs:

, , .

i. Use linear least squares to solve for the second layer weights, as-
suming that the regularization parameter .

ii. Plot the contour plot for the sum squared error. Recall that it will be 
a quadratic function. (See Chapter 8.)

iii. Write a MATLAB® M-file to check your answers to parts i. and ii.

iv. Repeat parts i. to iii., with . Plot regularized squared error.

E17.4 The Hessian matrix for the performance index of the RBF network, given 
in Eq. (17.25), is

.

Show that this matrix is at least positive semidefinite for , and show 
that it is positive definite if .

E17.5 Consider an RBF network with the weights and biases in the first layer 
fixed. Show how the LMS algorithm of Chapter 10 could be modified for 
learning the second layer weights and biases.

E17.6 Suppose that a Gaussian transfer function in the first layer of the RBF net-
work is replaced with a linear transfer function.

i. In Solved Problem P11.8, we showed that a multilayer perceptron 
with linear transfer functions in each layer is equivalent to a single-
layer perceptron. If we use a linear transfer function in each layer 
of an RBF network, is that equivalent to a single-layer network? Ex-
plain.

ii. Work out an example, equivalent to Figure 17.4, to demonstrate the 
operation of the RBF network with linear transfer function in the 
first layer. Use MATLAB® to plot your figures. Do you think that 
the RBF network will be a universal approximator, if the first layer 
transfer function is linear? Explain your answer. 

W1 1–

1
= b1 0.5

0.5
=

b2 0=

p1 1= t1 1–=,{ } p2 0= t2 0=,{ } p3 1–= t3 1=,{ }

ρ 0=

» 2 + 2

ans =
      4
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2 UTU ρI+[ ]
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E17.7 Write a MATLAB® program to implement the linear least squares algo-
rithm for the  RBF network with first layer weights and biases 
fixed. Train the network to approximate the function

 for .

i. Select 10 training points at random from the interval .

ii. Select four basis function centers evenly spaced on the interval 
. Then, use Eq. (17.9) to set the bias. Finally, use linear 

least squares to find the second layer weights and biases, assuming 
that there is no regularization. Plot the network response for 

, and show the training points on the same plot. Compute 
the sum squared error over the training set.

iii. Double the bias from part ii and repeat.

iv. Decrease the bias by half from part ii, and repeat.

v. Compare the final sum squared errors for all cases and explain your 
results.

E17.8 Use the function described in Exercise E17.7, and use an RBF network 
with 10 neurons in the hidden layer.

i. Repeat Exercise E17.7 ii. with regularization parameter . 
Describe the changes in the RBF network response. 

ii. Add random noise to the training targets. Repeat Exercise E17.7 ii. 
with no regularization and with regularization parameter 

. Which case produces the best results. Explain.

E17.9 Write a MATLAB® program to implement the orthogonal least squares al-
gorithm. Repeat Exercise E17.7 using the orthogonal least squares algo-
rithm. Use the 10 random training point inputs as the potential centers, 
and use Eq. (17.9) to set the bias. Use only the first four selected centers. 
Compare your final sum squared errors with the result from E17.7 part ii.

E17.10 Write a MATLAB® program to implement the steepest descent algorithm 
for the  RBF network. Train the network to approximate the func-
tion

 for .

You should be able to use a slightly modified version of the program you 
wrote for Exercise E11.11.

1 S1– 1–» 2 + 2

ans =
      4

g p( ) 1 π
8
---p⎝ ⎠
⎛ ⎞sin+= 2– p 2≤ ≤

2– p 2≤ ≤

2– p 2≤ ≤

2– p 2≤ ≤

» 2 + 2

ans =
      4

ρ 0.2=

ρ 0.2 2 20, ,=

» 2 + 2

ans =
      4

1 S1– 1–
» 2 + 2

ans =
      4

g p( ) 1 π
8
---p⎝ ⎠
⎛ ⎞sin+= 2– p 2≤ ≤
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i. Select 10 data points at random from the interval .

ii. Initialize all parameters (weights and biases in both layers) as 
small random numbers, and then train the network to convergence. 
(Experiment with the learning rate , to determine a stable value.) 
Plot the network response for , and show the training 
points on the same plot. Compute the sum squared error over the 
training set. Use 2, 4 and 8 centers.

iii. Repeat part ii., but use a different method for initializing the pa-
rameters. Start by setting the parameters as follows. First, select 
basis function centers evenly spaced on the interval . 
Then, use Eq. (17.9) to set the bias. Finally, use linear least squares 
to find the second layer weights and biases. Compute the squared 
error for these initial weights and biases. Starting from these initial 
conditions, train all parameters with steepest descent.

iv. Compare the final sum squared errors for all cases and explain your 
results.

E17.11 Suppose that a radial basis function layer (Layer 1 of the RBF network) 
were used in the second or third layer of a multilayer network. How could 
you modify the backpropagation equation, Eq. (11.35), to accommodate this 
change. (Recall that the weight update equations would be modified from 
Eq. (11.23) and Eq. (11.24) to Eq. (17.84) and Eq. (17.85).)

E17.12 Consider again Exercise E14.7, in which you trained a feature map to clus-
ter the input space

, .

Assume that over this input space, we wish to use an RBF network to ap-
proximate the following function:

.

i. Use MATLAB to randomly generate 200 input vectors in the region 
shown above.

ii. Write a MATLAB M-file to implement a four-neuron by four-neuron 
(two-dimensional) feature map. Calculate the net input by finding 
the distance between the input and weight vectors directly, as is 
done by the LVQ network, so the vectors do not need to be normal-
ized. Use the feature map to cluster the input vectors. 

iii. Use the trained feature map weight matrix from part ii as the 
weight matrix of the first layer of an RBF network. Use Eq. (17.79) 
to determine the average distance between each cluster and its cen-
ter, and then use Eq. (17.80) to set the bias for each neuron in the 

2– p 2≤ ≤

α
2– p 2≤ ≤

2– p 2≤ ≤

0 p1 1≤ ≤ 2 p2 3≤ ≤

t 2πp1( )sin 2πp2( )cos=

» 2 + 2
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first layer of the RBF network.

iv. For each of the 200 input vectors in part i, compute the target re-
sponse for the function above. Then use the resulting input/target 
pairs to determine the second-layer weights and bias for the RBF 
network.

v. Repeat parts ii to iv, using a two by two feature map. Compare your 
results.


