
Objectives

17-1

1717 Radial Basis Networks
Objectives 17-1
Theory and Examples 17-2

Radial Basis Network 17-2
Function Approximation 17-4
Pattern Classification 17-6
Global vs. Local 17-9

Training RBF Networks 17-9
Linear Least Squares 17-11
Orthogonal Least Squares 17-17
Clustering 17-22
Nonlinear Optimization 17-23
Other Training Techniques 17-25

Summary of Results 17-26
Solved Problems 17-29
Epilogue 17-33
Further Reading 17-34
Exercises 17-36

Objectives

The multilayer networks discussed in Chapters 11 and 12 represent one
type of neural network structure for function approximation and pattern
recognition. As we saw in Chapter 11, multilayer networks with sigmoid
transfer functions in the hidden layers and linear transfer functions in the
output layer are universal function approximators. In this chapter we will
discuss another type of universal approximation network, the radial basis
function network. This network can be used for many of the same applica-
tions as multilayer networks.

This chapter will follow the structure of Chapter 11. We will begin by dem-
onstrating, in an intuitive way, the universal approximation capabilities of
the radial basis function network. Then we will describe three different
techniques for training these networks. They can be trained by the same
gradient-based algorithms discussed in Chapters 11 and 12, with deriva-
tives computed using a form of backpropagation. However, they can also be
trained using a two-stage process, in which the first layer weights are com-
puted independently from the weights in the second layer. Finally, these
networks can be built in an incremental way - one neuron at a time.

17 Radial Basis Networks

17-2

Theory and Examples

The radial basis function network is related to the multilayer perceptron
network of Chapter 11. It is also a universal approximator and can be used
for function approximation or pattern recognition. We will begin this chap-
ter with a description of the network and a demonstration of its abilities for
function approximation and pattern recognition.

The original work in radial basis functions was performed by Powell and
others during the 1980’s [Powe87]. In this original work, radial basis func-
tions were used for exact interpolation in a multidimensional space. In oth-
er words, the function created by the radial basis interpolation was
required to pass exactly through all targets in the training set. The use of
radial basis functions for exact interpolation continues to be an important
application area, and it is also an active area of research.

For our purposes, however, we will not be considering exact interpolation.
Neural networks are often used on noisy data, and exact interpolation often
results in overfitting when the training data is noisy, as we discussed in
Chapter 13. Our interest is in the use of radial basis functions to provide
robust approximations to unknown functions based on generally limited
and noisy measurements. Broomhead and Lowe [BrLo88] were the first to
develop the radial basis function neural network model, which produces a
smooth interpolating function. No attempt is made to force the network re-
sponse to exactly match target outputs. The emphasis is on producing net-
works that will generalize well to new situations.

In the next section we will demonstrate the capabilities of the radial basis
function neural network. In the following sections we will describe proce-
dures for training these networks.

Radial Basis Network
The radial basis network is a two-layer network. There are two major dis-
tinctions between the radial basis function (RBF) network and a two layer
perceptron network. First, in layer 1 of the RBF network, instead of per-
forming an inner product operation between the weights and the input
(matrix multiplication), we calculate the distance between the input vector
and the rows of the weight matrix. (This is similar to the LVQ network
shown in Figure 14.13.) Second, instead of adding the bias, we multiply by
the bias. Therefore, the net input for neuron i in the first layer is calculated
as follows:

. (17.1)

RBF

ni
1 p w1

i– bi
1=

Radial Basis Network

17-3

17
Each row of the weight matrix acts as a center point - a point where the net
input value will be zero. The bias performs a scaling operation on the trans-
fer (basis) function, causing it to stretch or compress.

We should note that most papers and texts on RBF networks use the terms
standard deviation, variance or spread constant, rather than bias. We have
used the bias in order to maintain a consistency with other networks in this
text. This is simply a matter of notation and pedagogy. The operation of the
network is not affected. When a Gaussian transfer function is used, the
bias is related to the standard deviation as follows: .

The transfer functions used in the first layer of the RBF network are dif-
ferent than the sigmoid functions generally used in the hidden layers of
multilayer perceptrons (MLP). There are several different types of transfer
function that can be used (see [BrLo88]), but for clarity of presentation we
will consider only the Gaussian function, which is the one most commonly
used in the neural network community. It is defined as follows

, (17.2)

and it is plotted in Figure 17.1.

Figure 17.1 Gaussian Basis Function

A key property of this function is that it is local. This means that the output
is close to zero if you move very far in either direction from the center point.
This is in contrast to the global sigmoid functions, whose output remains
close to 1 as the net input goes to infinity.

The second layer of the RBF network is a standard linear layer:

(17.3)

b 1 σ 2()⁄=

MLP

a e n2–=

−3 −2 −1 0 1 2 3

0

0.2

0.4

0.6

0.8

1.0

a e n2–=

n

a

local function

global function

a2 W2a1 b2+=

17 Radial Basis Networks

17-4

Figure 17.2 shows the complete RBF network.

Figure 17.2 Radial Basis Network

Function Approximation
This RBF network has been shown to be a universal approximator
[PaSa93], just like the MLP network. To illustrate the capability of this
network, consider a network with two neurons in the hidden layer, one out-
put neuron, and with the following default parameters:

, , , ,

, , .

The response of the network with the default parameters is shown in Fig-
ure 17.3, which plots the network output as the input is varied over
the range .

Notice that the response consists of two hills, one for each of the Gaussian
neurons (basis functions) in the first layer. By adjusting the network pa-
rameters, we can change the shape and location of each hill, as we will see
in the following discussion. (As you proceed through this example, it may
be helpful to compare the response of this sample RBF network with the
response of the sample MLP network in Figure 11.5.)

S
1
x 1 S

2
x 1

S
1
x 1 S

2
x 1

S
1
x 1 S

2
x 1

R x 1
1

S
1
x R

S
2
x S

1

S
1

S
2

n
1

n
2

p
1

a
1

a
2

W
1

W
2

b
1

b
21 1

R
1

Inputs Radial Basis Layer

a radbas b
1 1 1

i i
= (|| - ||)w p i

Linear Layer

a W a b
2 2 1 2
= +

||dist||

.*

w1 1,
1 1–= w2 1,

1 1= b1
1 2= b2

1 2=

w1 1,
2 1= w1 2,

2 1= b2 0=

a2 p
2– 2,[]

Radial Basis Network

17-5

17

Figure 17.3 Default Network Response

Figure 17.4 illustrates the effects of parameter changes on the network re-
sponse. The blue curve is the nominal response. The other curves corre-
spond to the network response when one parameter at a time is varied over
the following ranges:

, , , . (17.4)

Figure 17.4 Effect of Parameter Changes on Network Response

Figure 17.4 (a) shows how the network biases in the first layer can be used
to change the width of the hills - the larger the bias, the narrower the hill.
Figure 17.4 (b) illustrates how the weights in the first layer determine the

−2 −1 0 1 2
−1

0

1

2

p

a2

0 w2 1,
1 2≤ ≤ 1– w1 1,

2 1≤ ≤ 0.5 b2
1 8≤ ≤ 1– b2 1≤ ≤

−2 −1 0 1 2
−1

0

1

2

−2 −1 0 1 2
−1

0

1

2

−2 −1 0 1 2
−1

0

1

2

−2 −1 0 1 2
−1

0

1

2

w2 1,
1

w1 1,
2 b2

b2
1

(a) (b)

(c) (d)

17 Radial Basis Networks

17-6

location of the hills; there will be a hill centered at each first layer weight.
For multidimensional inputs there will be a hill centered at each row of the
weight matrix. For this reason, each row of the first layer weight matrix is
often called the center for the corresponding neuron (basis function).

Notice that the effects of the weight and the bias in first layer of the RBF
network are much different than for the MLP network, which was shown
in Figure 11.6. In the MLP network, the sigmoid functions create steps.
The weights change the slopes of the steps, and the biases change the loca-
tions of the steps.

Figure 17.4 (c) illustrates how the weights in the second layer scale the
height of the hills. The bias in the second layer shifts the entire network
response up or down, as can be seen in Figure 17.4 (d). The second layer of
the RBF network is the same type of linear layer used in the MLP network
of Figure 11.6, and it performs a similar function, which is to create a
weighted sum of the outputs of the layer 1 neurons.

This example demonstrates the flexibility of the RBF network for function
approximation. As with the MLP, it seems clear that if we have enough
neurons in the first layer of the RBF network, we can approximate virtual-
ly any function of interest, and [PaSa93] provides a mathematical proof
that this is the case. However, although both MLP and RBF networks are
universal approximators, they perform their approximation in different
ways. For the RBF network, each transfer function is only active over a
small region of the input space - the response is local. If the input moves
far from a given center, the output of the corresponding neuron will be close
to zero. This has consequences for the design of RBF networks. We must
have centers adequately distributed throughout the range of the network
inputs, and we must select biases in such a way that all of the basis func-
tions overlap in a significant way. (Recall that the biases change the width
of each basis function.) We will discuss these design considerations in more
detail in later sections.

To experiment with the response of this RBF network, use the MATLAB®
Neural Network Design Demonstration RBF Network Function (nnd17nf).

Pattern Classification
To illustrate the capabilities of the RBF network for pattern classification,
consider again the classic exclusive-or (XOR) problem. The categories for
the XOR gate are

Category 1: , Category 2: .

center

2
2+

p2
1–

1
= p3

1
1–

=,
⎩ ⎭
⎨ ⎬
⎧ ⎫

p1
1–

1–
= p4

1
1

=,
⎩ ⎭
⎨ ⎬
⎧ ⎫

Radial Basis Network

17-7

17
The problem is illustrated graphically in the figure to the left. Because the
two categories are not linearly separable, a single-layer network cannot
perform the classification.

RBF networks can classify these patterns. In fact, there are many different
RBF solutions. We will consider one solution that demonstrates in a simple
way how to use RBF networks for pattern classification. The idea will be to
have the network produce outputs greater than zero when the input is near
patterns or , and outputs less than zero for all other inputs. (Note
that the procedures we will use to design this example network are not
suitable for complex problems, but they will help us illustrate the capabil-
ities of the RBF network.)

From the problem statement, we know that the network will need to have
two inputs and one output. For simplicity, we will use only two neurons in
the first layer (two basis functions), since this will be sufficient to solve the
XOR problem. As we discussed earlier, the rows of the first-layer weight
matrix will create centers for the two basis functions. We will choose the
centers to be equal to the patterns and . By centering a basis function
at each pattern, we can produce maximum network outputs there. The first
layer weight matrix is then

. (17.5)

The choice of the bias in the first layer depends on the width that we want
for each basis function. For this problem, we would like the network func-
tion to have two distinct peaks at and . Therefore, we don’t want the
basis functions to overlap too much. The centers of the basis functions are
each a distance of from the origin. We want the basis function to drop
significantly from its peak in this distance. If we use a bias of 1, we would
get the following reduction in that distance:

. (17.6)

Therefore, each basis function will have a peak of 1 at the centers, and will
drop to 0.1353 at the origin. This will work for our problem, so we select the
first layer bias vector to be

. (17.7)

The original basis function response ranges from 0 to 1 (see Figure 17.1).
We want the output to be negative for inputs much different than and

, so we will use a bias of -1 for the second layer, and we will use a value

p1

p2

p3

p4

p2 p3

p2 p3

W1 p2
T

p3
T

1– 1
1 1–

= =

p2 p3

2

a e n2
– e 1 2⋅()

2
– e 2– 0.1353= = = =

b1 1
1

=

p2
p3

17 Radial Basis Networks

17-8

of 2 for the second layer weights, in order to bring the peaks back up to 1.
The second layer weights and biases then become

, . (17.8)

For the network parameter values given in (17.5), (17.7) and (17.8), the net-
work response is shown in Figure 17.5. This figure also shows where the
surface intersects the plane at , which is where the decision takes
place. This is also indicated by the contours shown underneath the surface.
These are the function contours where . They are almost circles that
surround the and vectors. This means that the network output will
be greater than 0 only when the input vector is near the and vectors.

Figure 17.5 Example 2-Input RBF Function Surface

Figure 17.6 illustrates more clearly the decision boundaries. Whenever the
input falls in the blue regions, the output of the network will be greater
than zero. Whenever the network input falls outside the blue regions, the
network output will be less than zero.

W2
2 2= b2

1–=

a2 0=

a2 0=
p2 p3

p2 p3

−3
−2

−1
0

1
2

3

−3

−2

−1

0

1

2

3
−2

−1.5

−1

−0.5

0

0.5

1

p1
p2

a2

Radial Basis Network

17-9

17

Figure 17.6 RBF Example Decision Regions

This network, therefore, classifies the patterns correctly. It is not the best
solution, in the sense that it does not always assign input patterns to the
closest prototype vector, unlike the MLP solution shown in Figure 11.2.
You will notice that the decision regions for this RBF network are circles,
unlike the linear boundaries that we see in single layer perceptrons. The
MLP can put linear boundaries together to create arbitrary decision re-
gions. The RBF network can put circular boundaries together to create ar-
bitrary decision regions. In this problem, the linear boundaries are more
efficient. Of course, when many neurons are used, and the centers are close
together, the elementary RBF boundaries are no longer purely circular,
and the elementary MLP boundaries are no longer purely linear. However,
associating circular boundaries with RBF networks and linear boundaries
with MLP networks can be helpful in understanding their operation as pat-
tern classifiers.

To experiment with the RBF network for pattern classification, use the
MATLAB® Neural Network Design Demonstration RBF Pattern Classification
(nnd17pc).

Now that we see the power of RBF networks for function approximation
and pattern recognition, the next step is to develop general training algo-
rithms for these networks.

Global vs. Local
Before we discuss the training algorithms, we should say a final word about
the advantages and disadvantages of the global transfer functions used by
the MLP networks and the local transfer functions used by the RBF net-
works. The MLP creates a distributed representation, because all of the
transfer functions overlap in their activity. At any given input value, many

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

p1

p2

17 Radial Basis Networks

17-10

sigmoid functions in the first layer will have significant outputs. They must
sum or cancel in the second layer in order to produce the appropriate re-
sponse at each point. In the RBF network, each basis function is only active
over a small range of the input. For any given input, only a few basis func-
tions will be active.

There are advantages and disadvantages to each approach. The global ap-
proach tends to require fewer neurons in the hidden layer, since each neu-
ron contributes to the response over a large part of the input space. For the
RBF network, however, basis centers must be spread throughout the range
of the input space in order to provide an accurate approximation. This leads
to the problem of the “curse of dimensionality,” which we will discuss in the
next section. Also, if more neurons, and therefore more parameters, are
used, then there is a greater likelihood that the network will overfit the
training data and fail to generalize well to new situations.

On the other hand, the local approach generally leads to faster training, es-
pecially when the two-stage algorithms, which will be discussed in the next
section, are used. Also, the local approach can be very useful for adaptive
training, in which the network continues to be incrementally trained while
it is being used, as in adaptive filters (nonlinear versions of the filters in
Chapter 10) or controllers. If, for a period of time, training data only ap-
pears in a certain region of the input space, then a global representation
will tend to improve its accuracy in those regions at the expense of its rep-
resentation in other regions. Local representations will not have this prob-
lem to the same extent. Because each neuron is only active in a small region
of the input space, its weights will not be adjusted if the input falls outside
that region.

Training RBF Networks
Unlike the MLP network, which is almost always trained by some gradi-
ent-based algorithm (steepest descent, conjugate gradient, Levenberg-
Marquardt, etc.), the RBF network can be trained by a variety of approach-
es.

RBF networks can be trained using gradient-based algorithms. However,
because of the local nature of the transfer function and the way in which
the first layer weights and biases operate, there tend to be many more un-
satisfactory local minima in the error surfaces of RBF networks than in
those of MLP networks. For this reason, gradient-based algorithms are of-
ten unsatisfactory for the complete training of RBF networks. They are
used on occasion, however, for fine-tuning of the network after it has been
initially trained using some other method. Later in this chapter we will dis-
cuss the modifications to the backpropagation equations in Chapter 11 that
are needed to compute the gradients for RBF networks.

The most commonly used RBF training algorithms have two stages, which
treat the two layers of the RBF network separately. The algorithms differ

Training RBF Networks

17-11

17
mainly in how the first layer weights and biases are selected. Once the first
layer weights and biases have been selected, the second layer weights can
be computed in one step, using a linear least-squares algorithm. We will
discuss linear least squares in the next section.

The simplest of the two-stage algorithms arranges the centers (first layer
weights) in a grid pattern throughout the input range and then chooses a
constant bias so that the basis functions have some degree of overlap. This
procedure is not optimal, because the most efficient approximation would
place more basis functions in regions of the input space where the function
to be approximated is most complex. Also, for many practical cases the full
range of the input space is not used, and therefore many basis functions
could be wasted. One of the drawbacks of the RBF network, especially
when the centers are selected on a grid, is that they suffer from the curse
of dimensionality. This means that as the dimension of the input space in-
creases, the number of basis functions required increases geometrically.
For example, suppose that we have one input variable, and we specify a
grid of 10 basis functions evenly spaced across the range of the input vari-
able. Now increase the number of input variables to 2. To maintain the
same grid coverage for both input variables, we would need 102, or 100 ba-
sis functions.

Another method for selecting the centers is to select some random subset
of the input vectors in the training set. This ensures that basis centers will
be placed in areas where they will be useful to the network. However, due
to the randomness of the selection, this procedure is not optimal. A more
efficient approach is to use a method such as the Kohonen competitive lay-
er or the feature map, described in Chapter 16, to cluster the input space.
The cluster centers then become basis function centers. This ensures that
the basis functions are placed in regions with significant activity. We will
discuss this method in a later section.

A final procedure that we will discuss for RBF training is called orthogonal
least squares. It is based on a general method for building linear models
called subset selection. This method starts with a large number of possible
centers - typically all of the input vectors from the training data. At each
stage of the procedure, it selects one center to add to the first layer weight.
The selection is based on how much the new neuron will reduce the sum
squared error. Neurons are added until some criteria is met. The criteria is
typically chosen to maximize the generalization capability of the network.

Linear Least Squares
In this section we will assume that the first layer weights and biases of the
RBF network are fixed. This can be done by fixing the centers on a grid, or
by randomly selecting the centers from the input vectors in the training
data set (or by using the clustering method which is described in a later sec-
tion). When the centers are randomly selected, all of the biases can be se-
lected using the following formula [Lowe89]:

Curse of Dimensionali

17 Radial Basis Networks

17-12

, (17.9)

where is the maximum distance between neighboring centers. This is
designed to ensure an appropriate degree of overlap between the basis
functions. Using this method, all of the biases have the same value. There
are other methods which use different values for each bias. We will discuss
one such method later, in the section on clustering.

Once the first layer parameters have been set, the training of the second
layer weights and biases is equivalent to training a linear network, as in
Chapter 10. For example, consider that we have the following training
points

, (17.10)

where is an input to the network, and is the corresponding target
output. The output of the first layer for each input in the training set
can be computed as

, (17.11)

. (17.12)

Since the first layer weights and biases will not be adjusted, the training
data set for the second layer then becomes

. (17.13)

The second layer response is linear:

. (17.14)

We want to select the weights and biases in this layer to minimize the sum
square error performance index over the training set:

(17.15)

Our derivation of the solution to this linear least squares problem will fol-
low the linear network derivation starting with Eq. (10.6). To simplify the
discussion, we will assume a scalar target, and we will lump all of the pa-
rameters we are adjusting, including the bias, into one vector:

bi
1 S1

dmax
----------=

dmax

p1 t1{ , } p2 t2{ , } … pQ tQ{ , }, , ,

pq tq
pq

ni q,
1 pq w1

i– bi
1=

aq
1 radbas nq

1()=

a1
1 t1,{ } a2

1 t2,{ } … aQ
1 tQ,{ }, , ,

a2 W2a1 b2+=

F x() tq aq
2–()

T
tq aq

2–()
q 1=

Q

∑=

Training RBF Networks

17-13

17
. (17.16)

Similarly, we include the bias input “1” as a component of the input vector

. (17.17)

Now the network output, which we usually write in the form

, (17.18)

can be written as

. (17.19)

This allows us to conveniently write out an expression for the sum square
error:

. (17.20)

To express this in matrix form, we define the following matrices:

, , . (17.21)

The error can now be written

, (17.22)

and the performance index become

. (17.23)

If we use regularization, as we discussed in Chapter 13, to help in prevent-
ing overfitting, we obtain the following form for the performance index:

x w2
1

b2
=

zq
aq

1

1
=

aq
2 w2

1()
T
aq

1 b2+=

aq xTzq=

F x() eq()2

q 1=

Q

∑ tq aq–()2

q 1=

Q

∑ tq xTzq–()
2

q 1=

Q

∑= = =

t

t1

t2

tQ

= … U

uT
1

uT
2

uT
Q

z1
T

z2
T

zQ
T

= =… … e

e1

e2

eQ

= …

e t Ux–=

F x() t Ux–()T t Ux–()=

17 Radial Basis Networks

17-14

, (17.24)

where from Eq. (13.4). Let’s expand this expression to obtain

(17.25)

Take a close look at Eq. (17.25), and compare it with the general form of the
quadratic function, given in Eq. (8.35) and repeated here:

. (17.26)

Our performance function is a quadratic function, where

, and . (17.27)

From Chapter 8 we know that the characteristics of the quadratic function
depend primarily on the Hessian matrix . For example, if the eigenvalues
of the Hessian are all positive, then the function will have one unique glo-
bal minimum.

In this case the Hessian matrix is , and it can be shown that
this matrix is either positive definite or positive semidefinite (see Exercise
E17.4), which means that it can never have negative eigenvalues. We are
left with two possibilities. If the Hessian matrix has only positive eigenval-
ues, the performance index will have one unique global minimum (see Fig-
ure 8.7). If the Hessian matrix has some zero eigenvalues, the performance
index will either have a weak minimum (see Figure 8.9) or no minimum
(see Problem P8.7), depending on the vector . In this case, it must have a
minimum, since is a sum square function, which cannot be negative.

Now let’s locate the stationary point of the performance index. From our
previous discussion of quadratic functions in Chapter 8, we know that the
gradient is

. (17.28)

The stationary point of can be found by setting the gradient equal to
zero:

 . (17.29)

Therefore, the optimum weights can be computed from

F x() t Ux–()T t Ux–() ρ xi
2

i 1=

n

∑+ t Ux–()T t Ux–() ρxTx+= =

ρ α β⁄=

F x() t Ux–()T t Ux–() ρxTx+ tTt 2tTUx– xTUTUx ρxTx+ += =

tTt 2tTUx– xT UTU ρI+[]x+=

F x() c dTx 1
2
---xTAx+ +=

c tTt= d 2UTt–= A 2 UTU ρI+[]=

A

2 UTU ρI+[]

d
F x()

∇F x() ∇ c dTx 1
2
---xTAx+ +⎝ ⎠

⎛ ⎞ d Ax+ 2UTt– 2 UTU ρI+[]x+= = =

F x()

2ZTt– 2 UTU ρI+[]x+ 0= ⇒ UTU ρI+[]x UTt=

x∗

Training RBF Networks

17-15

17
. (17.30)

If the Hessian matrix is positive definite, there will be a unique stationary
point, which will be a strong minimum:

(17.31)

Let’s demonstrate this procedure with a simple problem.

Example

To illustrate the least squares algorithm, let’s choose a network and apply
it to a particular problem. We will use an RBF network with three neurons
in the first layer to approximate the following function

 for . (17.32)

To obtain our training set we will evaluate this function at six values of :

. (17.33)

This produces the targets

. (17.34)

We will choose the basis function centers to be spaced equally throughout
the input range: -2, 0 and 2. For simplicity, we will choose the bias to be the
reciprocal of the spacing between points. This produces the following first
layer weight and bias.

, . (17.35)

The next step is to compute the output of the first layer, using the following
equations.

, (17.36)

. (17.37)

This produces the following vectors

UTU ρI+[]x∗ UTt=

x∗ UTU ρI+[]
1–
UTt=

2
2+

g p() 1 π
4
---p⎝ ⎠
⎛ ⎞sin+= 2– p 2≤ ≤

p

p 2– 1.2– 0.4– 0.4 1.2 2, , , , ,{ }=

t 0 0.19 0.69 1.3 1.8 2, , , , ,{ }=

W1
2–

0
2

= b1
0.5
0.5
0.5

=

ni q,
1 pq w1

i– bi
1=

aq
1 radbas nq

1()=

a1

17 Radial Basis Networks

17-16

(17.38)

We can use Eq. (17.17) and Eq. (17.21) to create the U and t matrices

, (17.39)

. (17.40)

The next step is to solve for the weights and biases in the second layer us-
ing Eq. (17.30). We will begin with the regularization parameter set to zero.

(17.41)

The second layer weight and bias are therefore

, . (17.42)

Figure 17.7 illustrates the operation of this RBF network. The blue line
represents the RBF approximation, and the circles represent the six data
points. The dotted lines in the upper axis represent the individual basis
functions scaled by the corresponding weights in the second layer (includ-
ing the constant bias term). The sum of the dotted lines will produce the
blue line. In the small axis at the bottom, you can see the unscaled basis
functions, which are the outputs of the first layer.

a1
1

0.368
0.018

0.852
0.698
0.077

0.527
0.961
0.237

0.237
0.961
0.527

0.077
0.698
0.852

0.018
0.368

1

, , , , ,

⎩ ⎭
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎧ ⎫

=

UT

1 0.852 0.527 0.237 0.077 0.018
0.368 0.698 0.961 0.961 0.698 0.368
0.018 0.077 0.237 0.527 0.852 1

1 1 1 1 1 1

=

tT
0 0.19 0.69 1.3 1.8 2=

x∗ UTU ρI+[]
1–
UTt=

2.07 1.76 0.42 2.71
1.76 3.09 1.76 4.05
0.42 1.76 2.07 2.71
2.71 4.05 2.71 6

1–
1.01
4.05
4.41

6

1.03–

0
1.03

1

= =

W2
1.03– 0 1.03= b2

1=

Training RBF Networks

17-17

17

Figure 17.7 RBF Sine Approximation

The RBF network design process can be sensitive to the choice of the center
locations and the bias. For example, if we select six basis functions and six
data points, and if we choose the first layer biases to be 8, instead of 0.5,
then the network response will be as shown in Figure 17.8. The spread of
the basis function decreases as the inverse of the bias. When the bias is this
large, there is not sufficient overlap in the basis functions to provide a
smooth approximation. We match each data point exactly. However, be-
cause of the local nature of the basis function, the approximation to the
true function is not accurate between the training data points.

Figure 17.8 RBF Response with Bias Too Large

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.5

1

p

a2

a1

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−1

−0.5

0

0.5

1

1.5

2

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.5

1

p

a2

a1

17 Radial Basis Networks

17-18

To experiment with the linear least squares fitting, use the MATLAB® Neu-
ral Network Design Demonstration RBF Linear Least Squares (nnd17lls).

Orthogonal Least Squares
In the previous section we assumed that the weights and biases in the first
layer were fixed. The centers were fixed on a grid, or were randomly select-
ed from the input vectors in the training data set. In this section we consid-
er a different approach for selecting the centers. We will assume that there
exists a number of potential centers. These centers could include the entire
set of input vectors in the training set, vectors chosen in a grid pattern, or
vectors chosen by any other procedure one might think of. We will then se-
lect vectors one at a time from this set of potential centers, until the net-
work performance is satisfactory. We will build up the network one neuron
at a time.

The basic idea behind this method comes from statistics, and it is called
subset selection [Mill90]. The general objective of subset selection is to
choose an appropriate subset of independent variables to provide the most
efficient prediction of a target dependent variable. For example, suppose
that we have 10 independent variables, and we want to use them to predict
our target dependent variable. We want to create the simplest predictor
possible, so we want to use the minimum number of independent variables
for the prediction. Which subset of the 10 independent variables should we
use? The optimal approach, called an exhaustive search, tries all combina-
tions of subsets and finds the smallest one that provides satisfactory per-
formance. (We will define later what we mean by satisfactory
performance.)

Unfortunately, this strategy is not practical. If we have Q variables in our
original set, the following expression gives the number of distinct subsets:

. (17.43)

If , this number is 1023. If , the number is more than 1 mil-
lion. We need to have a less expensive strategy than the exhaustive search.
There are several suboptimal procedures. They are not guaranteed to find
the optimal subset, but they require significantly less computation. One
procedure is called forward selection. This method begins with an empty
model and then adds variables one at a time. At each stage, we add the in-
dependent variable that provides the largest reduction in squared error.
We stop adding variables when the performance is adequate. Another ap-
proach, called backward elimination, starts with all independent variables
selected for the model. At each stage we eliminate the variable that would
cause the least increase in the squared error. The process continues until
the performance is inadequate. There are other approaches which combine

Subset Selection

Q!
q! Q q–()!

q 1=

Q

∑

Q 10= Q 20=

Forward Selection

Backward Elimination

Training RBF Networks

17-19

17
forward selection and backward elimination, so that variables can be added
and deleted at each iteration.

Any of the standard subset selection techniques can be used for selecting
RBF centers. For purposes of illustration, we will consider one specific form
of forward selection, called orthogonal least squares [ChCo91]. Its main
feature is that it efficiently calculates the error reduction provided by the
addition of each potential center to the RBF network.

To develop the orthogonal least squares algorithm, we begin with Eq.
(17.22), repeated here in slightly different form:

. (17.44)

We will use our standard notation for matrix rows and columns to individ-
ually identify both the rows and the columns of the matrix U:

(17.45)

Here each row of the matrix represents the output of layer 1 of the RBF
network for one input vector from the training set. There will be a column
of the matrix U for each neuron (basis function) in layer 1 plus the bias term
(). Note that for the OLS algorithm, the potential centers for the
basis functions are often chosen to be all of the input vectors in the training
set. In this case, will equal , since the constant “1” for the bias term
is included in , as shown in Eq. (17.17).

Eq. (17.44) is in the form of a standard linear regression model. The matrix
 is called the regression matrix, and the columns of are called the re-

gressor vectors.

The objective of OLS is to determine how many columns of (numbers of
neurons or basis functions) should be used. The first step is to calculate
how much each potential column would reduce the squared error. The prob-
lem is that the columns are generally correlated with each other, and so it
is difficult to determine how much each individual column would reduce
the error. For this reason, we need to first orthogonalize the columns. Or-
thogonalizing the columns means that we can decompose as follows:

, (17.46)

where is an upper triangular matrix, with ones on the diagonal:

t Ux e+=

U

uT
1

uT
2

uT
Q

z1
T

z2
T

zQ
T

u1 u2 … un= = =… …

U

n S1 1+=

n Q 1+
z

U U

U

U

U MR=

R

17 Radial Basis Networks

17-20

, (17.47)

and is a matrix with orthogonal columns . This means that has
the following properties

(17.48)

Now Eq. (17.44) can be written

, (17.49)

where

. (17.50)

The least squares solution for Eq. (17.49) is

, (17.51)

and because is diagonal, the elements of can be computed

. (17.52)

From we can compute using Eq. (17.50). Since is upper-triangu-
lar, Eq. (17.50) can be solved by back-substitution and does not require a
matrix inversion.

There are a number of ways to obtain the orthogonal vectors , but we
will use the Gram-Schmidt orthogonalization process of Eq. (5.20), starting
with the original columns of .

, (17.53)

R

1 r1 2, r1 3, … r1 n,

0 1 r2 3, … r2 n,

…
0 0 0 … rn 1– n,

0 0 0 … 1

= …………

M mi M

MTM V

v1 1, 0 … 0
0 v2 2, … 0

0 0 … vn n,

m1
Tm1 0 … 0

0 m2
Tm2 … 0

0 0 … mn
Tmn

= = =……… ………

t MRx e+ Mh e+= =

h Rx=

h∗ MTM[]
1–
MTt V[] 1– MTt= =

V h∗

hi∗
mi

Tt
vi i,

mi
Tt

mi
Tmi

--------------= =

h∗ x∗ R

mi

U

m1 u1=

Training RBF Networks

17-21

17
, (17.54)

where

, . (17.55)

Now let’s see how orthogonalizing the columns of enables us to efficient-
ly calculate the squared error contribution of each basis vector. Using Eq.
(17.49), the total sum square value of the targets is given by

. (17.56)

Consider the second term in the sum:

. (17.57)

If we use the optimal from Eq. (17.51), we find

. (17.58)

Therefore the total sum square value from Eq. (17.56) becomes

. (17.59)

The first term on the right of Eq. (17.59) is the contribution to the sum
squared value explained by the regressors, and the second term is the re-
maining sum squared value that is not explained by the regressors. There-
fore, regressor (basis function) contributes

(17.60)

to the squared value. This also represents how much the squared error can
be reduced by including the corresponding basis function in the network.
We will use this number, after normalizing by the total squared value, to
determine the next basis function to include at each iteration:

. (17.61)

This number always falls between zero and one.

mk uk ri k, mi

i 1=

k 1–

∑–=

ri k,
mi

Tuk

mi
Tmi

--------------= i 1 … k 1–, ,=

U

tTt Mh e+[]T Mh e+[] hTMTMh eTMh hTMTe eTe+ + += =

eTMh t Mh–[]TMh tTMh hTMTMh–= =

h∗

eTMh∗ tTMh∗ tTMV 1– M
T
Mh∗– tTMh∗ tTMh∗– 0= = =

tTt hTMTMh eTe+ hTVh eTe+ hi
2mi

Tmi

i 1=

n

∑ eTe+= = =

i

hi
2mi

Tmi

oi
hi

2mi
Tmi

tTt
--------------------=

17 Radial Basis Networks

17-22

Now let’s put all these ideas together into an algorithm for selecting cen-
ters.

The OLS Algorithm

To begin the algorithm, we start with all potential basis functions included
in the regression matrix . (As we explained below Eq. (17.45), if all input
vectors in the training set are to be considered potential basis function cen-
ters, then the matrix will be by .) This matrix represents only
potential basis functions, since we start with no basis functions included in
the network.

The first stage of the OLS algorithm consists of the following three steps,
for :

, (17.62)

, (17.63)

. (17.64)

We then select the basis function that creates the largest reduction in er-
ror:

, (17.65)

. (17.66)

The remaining iterations of the algorithm continue as follows (for iteration
k):

For , , ...,

, , (17.67)

, (17.68)

U

U Q Q 1+

i 1 … Q, ,=

m1
i() ui=

h1
i() m1

i()Tt

m1
i()Tm1

i()
----------------------=

o1
i() h1

i()()
2
m1

i()Tm1
i()

tTt
-------------------------------------=

o1 o1
i1()

max o1
i(){ }= =

m1 m1
i1()

ui1
= =

i 1 … Q, ,= i i1≠ i ik 1–≠

rj k,
i() mj

Tui

mj
Tmj

--------------= j 1 … k 1–, ,=

mk
i() ui rj k,

i()mj

j 1=

k 1–

∑–=

Training RBF Networks

17-23

17
, (17.69)

, (17.70)

, (17.71)

, . (17.72)

. (17.73)

The iterations continue until some stopping criterion is met. One choice of
stopping criterion is

, (17.74)

where is some small number. However, if is chosen too small, we can
have overfitting, since the network will become too complex. An alternative
is to use a validation set, as we discussed in the chapter on generalization.
We would stop when the error on the validation set increased.

After the algorithm has converged, the original weights can be computed
from the transformed weights by using Eq. (17.50). This produces, by
back substitution,

, , (17.75)

where is the final number of weights and biases in the second layer (ad-
justable parameters).

To experiment with orthogonal least squares learning, use the MATLAB®
Neural Network Design Demonstration RBF Orthogonal Least Squares
(nnd17ols).

Clustering
There is another approach [MoDa89] for selecting the weights and biases
in the first layer of the RBF network. This method uses the competitive net-
works described in Chapter 16. Recall that the competitive layer of Ko-
honen (see Figure 14.2) and the Self Organizing Feature Map (see Figure

hk
i() mk

i()Tt

mk
i()Tmk

i()
----------------------=

ok
i() hk

i()()
2
mk

i()Tmk
i()

tTt
-------------------------------------=

ok ok
ik()

max ok
i(){ }= =

rj k, rj k,
ik()

= j 1 … k 1–, ,=

mk mk
ik()

=

1 oj

j 1=

k

∑– δ<

δ δ

x
h

xn hn= xk hk rj k, xj

j k 1+=

n

∑–=

n

17 Radial Basis Networks

17-24

14.9) perform a clustering operation on the input vectors of the training set.
After training, the rows of the competitive networks contain prototypes, or
cluster centers. This provides an approach for locating centers and select-
ing biases for the first layer of the RBF network. If we take the input vec-
tors from the training set and perform a clustering operation on them, the
resulting prototypes (cluster centers) could be used as centers for the RBF
network. In addition, we could compute the variance of each individual
cluster and use that number to calculate an appropriate bias to be used for
the corresponding neuron.

Consider again the following training set:

. (17.76)

We want to perform a clustering of the input vectors from this training set:

. (17.77)

We will train the first layer weights of the RBF network to perform a clus-
tering of these vectors, using the Kohonen learning rule of Eq. (14.13), and
repeated here:

, (17.78)

where is one of the input vectors in the training set, and is
the weight vector that was closest to . (We could also use other cluster-
ing algorithms, such as the Self Organizing Feature Map, or the k-means
clustering algorithm, which was suggested in [MoDa89].) As described in
Chapter 16, Eq. (17.78) is repeated until the weights have converged. The
resulting converged weights will represent cluster centers of the training
set input vectors. This will insure that we will have basis functions located
in areas where input vectors are most likely to occur.

In addition to selecting the first layer weights, the clustering process can
provide us with a method for determining the first layer biases. For each
neuron (basis function), locate the input vectors from the training set
that are closest to the corresponding weight vector (center). Then compute
the average distance between the center and its neighbors.

(17.79)

where is the input vector that closest to , and is the next closest
input vector. From these distances, [MoDa89] recommends setting the first
layer biases as follows:

p1 t1{ , } p2 t2{ , } … pQ tQ{ , }, , ,

p1 p2 … pQ, , ,{ }

w1
i∗ q() w1

i∗ q 1–() α p q() w1
i∗ q 1–()–()+=

p q() w1
i∗ q 1–()

p q()

nc

disti
1
nc
----- pj

i w1
i–

2

j 1=

nc

∑⎝ ⎠
⎜ ⎟
⎛ ⎞

1
2

=

p1
i w1

i p2
i

Training RBF Networks

17-25

17
. (17.80)

Therefore, when a cluster is wide, the corresponding basis function will be
wide as well. Notice that in this case each bias in the first layer will be dif-
ferent. This should provide a network that is more efficient in its use of ba-
sis functions than a network with equal biases.

After the weights and biases of the first layer are determined, linear least
squares is used to find the second layer weights and biases.

There is a potential drawback to the clustering method for designing the
first layer of the RBF network. The method only takes into account the dis-
tribution of the input vectors; it does not consider the targets. It is possible
that the function we are trying to approximate is more complex in regions
for which there are fewer inputs. For this case, the clustering method will
not distribute the centers appropriately. On the other hand, one would
hope that the training data is located in regions where the network will be
most used, and therefore the function approximation will be most accurate
in those areas.

Nonlinear Optimization
It is also possible to train RBF networks in the same manner as MLP net-
works - using nonlinear optimization techniques, in which all weights and
biases in the network are adjusted at the same time. These methods are not
generally used for the full training of RBF networks, because these net-
works tend to have many more unsatisfactory local minima in their error
surfaces. However, nonlinear optimization can be used for the fine-tuning
of the network parameters, after initial training by one of the two-stage
methods we presented in earlier sections.

We will not present the nonlinear optimization methods in their entirety
here, since they were treated extensively in Chapters 11 and 12. Instead,
we will simply indicate how the basic backpropagation algorithm for com-
puting the gradient in MLP networks can be modified for RBF networks.

The derivation of the gradient for RBF networks follows the same pattern
as the gradient development for MLP networks, starting with Eq. (11.9),
which you may wish to review at this time. Here we will only discuss the
one step where the two derivations differ. The difference occurs with Eq.
(11.20). The net input for the second layer of the RBF network has the same
form as its counterpart in the MLP network, but the first layer net input
has a different form (as given in Eq. (17.1) and repeated here):

. (17.81)

bi
1 1

2disti

------------------=

ni
1 p w1

i– bi
1 bi

1 pj wi j,
1–()

2

j 1=

S1

∑= =

17 Radial Basis Networks

17-26

If we take the derivative of this function with respect to the weights and
biases, we obtain

, (17.82)

. (17.83)

This produces the modified gradient equations (compare with Eq. (11.23)
and Eq. (11.24)) for Layer 1 of the RBF network

, (17.84)

. (17.85)

Therefore, if we look at the summary of the gradient descent backpropaga-
tion algorithm for MLP networks, from Eq. (11.44) to Eq. (11.47), we find
that the only difference for RBF networks is that we substitute Eq. (17.84)
and Eq. (17.85) for Eq. (11.46) and Eq. (11.47) when . When
the original equations remain the same.

To experiment with nonlinear optimization learning, use the MATLAB®
Neural Network Design Demonstration RBF Nonlinear Optimization
(nnd17no).

Other Training Techniques
In this chapter we have only touched the surface of the variety of training
techniques that have been proposed for RBF networks. We have attempted
to present the principal concepts, but there are many variations. For exam-
ple, the OLS algorithm has been extended to handle multiple outputs
[ChCo92] and regularized performance indices [ChCh96]. It has also been
used in combination with a genetic algorithm [ChCo99], which was used to
select the first layer biases and the regularization parameter. The expecta-
tion maximization algorithm has also been suggested by several authors
for optimizing the center locations, starting with [Bish91]. [OrHa00] used
a regression tree approach for center selection. There have also been many
variations on the use of clustering and on the combination of clustering for
initialization and nonlinear optimization for fine-tuning. The architecture
of the RBF network lends itself to many training approaches.

ni
1∂

wi j,
1∂

----------- bi
1 1 2⁄

pj wi j,
1–()

2

j 1=

S1

∑

---------------------------------------2 pj wi j,
1–() 1–()

bi
1 wi j,

1 pj–()

p w1
i–

-----------------------------= =

ni
1∂

bi
1∂

-------- p w1
i–=

F̂∂
wi j,

1∂
----------- si

1bi
1 wi j,

1 pj–()

p w1
i–

-----------------------------=

F̂∂
bi

1∂
-------- si

1 p w1
i–=

m 1= m 2=

Summary of Results

17-27

17
Summary of Results

Radial Basis Network

Training RBF Networks

Linear Least Squares

,

, ,

S
1
x 1 S

2
x 1

S
1
x 1 S

2
x 1

S
1
x 1 S

2
x 1

R x 1
1

S
1
x R

S
2
x S

1

S
1

S
2

n
1

n
2

p
1

a
1

a
2

W
1

W
2

b
1

b
21 1

R
1

Inputs Radial Basis Layer

a radbas b
1 1 1

i i
= (|| - ||)w p i

Linear Layer

a W a b
2 2 1 2
= +

||dist||

.*

x w2
1

b2
= zq

aq
1

1
=

t

t1

t2

tQ

= … U

uT
1

uT
2

uT
Q

z1
T

z2
T

zQ
T

= =… … e

e1

e2

eQ

= …

F x() t Ux–()T t Ux–() ρxTx+=

UTU ρI+[]x∗ UTt=

17 Radial Basis Networks

17-28

Orthogonal Least Squares

Step 1

,

,

.

.

Step k

For , , ...,

, ,

,

,

,

,

.

m1
i() ui=

h1
i() m1

i()Tt

m1
i()Tm1

i()
----------------------=

o1
i() h1

i()()
2
m1

i()Tm1
i()

tTt
-------------------------------------=

o1 o1
i1()

max o1
i(){ }= =

m1 m1
i1()

ui1
= =

i 1 … Q, ,= i i1≠ i ik 1–≠

rj k,
i() mj

Tuk

mj
Tmj

--------------= j 1 … k, ,=

mk
i() ui rj k,

i()mj

j 1=

k 1–

∑–=

hk
i() mk

i()Tt

mk
i()Tmk

i()
----------------------=

ok
i() hk

i()()
2
mk

i()Tmk
i()

tTt
-------------------------------------=

ok ok
ik()

max ok
i(){ }= =

mk mk
ik()

=

Summary of Results

17-29

17
Clustering

Training the weights

Selecting the bias

Nonlinear Optimization

Replace Eq. (11.46) and Eq. (11.47) in standard backpropagation with

,

.

w1
i∗ q() w1

i∗ q 1–() α p q() w1
i∗ q 1–()–()+=

disti
1
nc
----- pj

i w1
i–

2

j 1=

nc

∑⎝ ⎠
⎜ ⎟
⎛ ⎞

1
2

=

bi
1 1

2disti

------------------=

F̂∂
wi j,

1∂
----------- si

1bi
1 wi j,

1 pj–()

p w1
i–

-----------------------------=

F̂∂
bi

1∂
-------- si

1 p w1
i–=

17 Radial Basis Networks

17-30

Solved Problems

P17.1 Use the OLS algorithm, to approximate the following function:

 for .

To obtain our training set we will evaluate this function at five val-
ues of :

.

This produces the targets

.

Perform one iteration of the OLS algorithm. Assume that the in-
puts in the training set are the potential centers and that the bias-
es are all equal to 1.

First, we compute the outputs of the first layer:

,

,

.

We can use Eq. (17.17) and Eq. (17.21) to create the U and t matrices:

,

.

g p() πp()cos= 1– p 1≤ ≤

p

p 1– 0.5– 0 0.5 1, , , ,{ }=

t 1– 0 1 0 1–, , , ,{ }=

ni q,
1 pq w1

i– bi
1=

aq
1 radbas nq

1()=

a1

1.000
0.779
0.368
0.105
0.018

0.779
1.000
0.779
0.368
0.105

0.368
0.779
1.000
0.779
0.368

0.105
0.368
0.779
1.000
0.779

0.018
0.105
0.368
0.779
1.000

, , , ,

⎩ ⎭
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎧ ⎫

=

UT

1.000 0.779 0.368 0.105 0.018
0.779 1.000 0.779 0.368 0.105
0.368 0.779 1.000 0.779 0.368
0.105 0.368 0.779 1.000 0.779
0.018 0.105 0.368 0.779 1.000
1.000 1.000 1.000 1.000 1.000

=

tT
1– 0 1 0 1–=

Solved Problems

17-31

17
Now we perform step one of the algorithm:

,

, , , ,

, ,

,

, , , , ,

,

,

, , , , ,

.

We see that the first and fifth centers would produce a 0.0804 reduction in
the error. This means that the error would be reduced by 8.04%, if the first
or fifth center were used in a single-neuron first layer. We would typically
select the first center, since it has the smallest index.

If we were to stop at this point, we would add the first center to the hidden
layer. Using Eq. (17.75), we would find that

. Also, , since the bias center, ,
was not selected on the first iteration. Note that if we continue to add neu-
rons in the hidden layer, the first weight will change. This can be seen from
Eq. (17.75). This equation to find is only used after all of the are
found. Only will exactly equal .

m1
i() ui=

m1
1()

1.000
0.779
0.368
0.105
0.018

= m1
2()

0.779
1.000
0.779
0.368
0.105

= m1
3()

0.368
0.779
1.000
0.779
0.368

= m1
4()

0.105
0.368
0.779
1.000
0.779

=

m1
5()

0.018
0.105
0.368
0.779
1.000

= m1
6()

1.000
1.000
1.000
1.000
1.000

=

h1
i() m1

i()Tt

m1
i()Tm1

i()
----------------------=

h1
1() 0.317–= h1

2() 0.045–= h1
3() 0.106= h1

4() 0.045–= h1
5() 0.317–=

h1
6() 0.200–=

o1
i() h1

i()()
2
m1

i()Tm1
i()

tTt
-------------------------------------=

o1
1() 0.0804= o1

2() 0.0016= o1
3() 0.0094= o1

4() 0.0016= o1
5() 0.0804=

o1
6() 0.0667=

w1 1,
2 x1 h1 h1

1() 0.317–= = = = b2 0= m1
6()

xk hk
xn hn

17 Radial Basis Networks

17-32

If we continued the algorithm, the first column would be removed from .
We would then orthogonalize all remaining columns of with respect to

, which was chosen on the first iteration, using Eq. (17.54). It is inter-
esting to note that the error reduction on the second iteration would be
much higher than the reduction on the first iteration. The sequence of re-
ductions would be 0.0804, 0.3526, 0.5074, 0.0448, 0.0147, 0, and the centers
would be chosen in the following order: 1, 2, 5, 3, 4, 6. The reason that re-
ductions in later iterations are higher is that it takes a combination of basis
functions to produce the best approximation. This is why forward selection
is not guaranteed to produce the optimal combination, which can be found
with an exhaustive search. Also, notice that the bias is selected last, and it
produces no reduction in the error.

P17.2 Figure P17.1 illustrates a classification problem, where Class I vec-
tors are represented by dark circles, and Class II vectors are rep-
resented by light circles. These categories are not linearly
separable. Design a radial basis function network to correctly clas-
sify these categories.

Figure P17.1 Classification Problem for Problem P17.2

From the problem statement, we know that the network will need to have
two inputs, and we can use one output to distinguish the two classes. We
will choose a positive output for Class I vectors, and a negative output for
Class II vectors. The Class I region is made up of two simple subregions,
and it appears that two neurons should be sufficient to perform the classi-
fication. The rows of the first-layer weight matrix will create centers for the
two basis functions, and we will choose each center to be located in the mid-
dle of one subregion. By centering a basis function in each subregion, we
can produce maximum network outputs there. The first layer weight ma-
trix is then

.

The choice of the biases in the first layer depends on the width that we
want for each basis function. For this problem, the first basis function
should be wider than the second. Therefore, the first bias will be smaller
than the second bias. The boundary formed by the first basis function

U
U

m1

W1 1 1
2.5 2.5

=

Solved Problems

17-33

17
should have a radius of approximately 1, while the second basis function
boundary should have a radius of approximately . We want the basis
functions to drop significantly from their peaks in these distances. If we use
a bias of 1 for the first neuron and a bias of 2 for the second neuron, we get
the following reductions within one radius of the centers:

,

This will work for our problem, so we select the first layer bias vector to be

.

The original basis function response ranges from 0 to 1 (see Figure 17.1).
We want the output to be negative for inputs outside the decision regions,
so we will use a bias of -1 for the second layer, and we will use a value of 2
for the second layer weights, in order to bring the peaks back up to 1. The
second layer weights and biases then become

, .

For these network parameter values, the network response is shown on the
right side of Figure P17.2. This figure also shows where the surface inter-
sects the plane at , which is where the decision takes place. This is
also indicated by the contours shown underneath the surface. These are the
function contours where . These decision regions are shown more
clearly on the left side of Figure P17.2.

Figure P17.2 Decision Regions for Problem P17.2

1 2⁄

a e n2– e 1 1⋅()2– e 1– 0.3679= = = = a e n2– e 2 0.5⋅()2– e 1– 0.3679= = = =

b1 1
2

=

W2
2 2= b2

1–=

a2 0=

a2 0=

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

4

0

1

2

3

4 0

1

2

3

4

−2

−1.5

−1

−0.5

0

0.5

1

p1 p2

a2

p1

p2

17 Radial Basis Networks

17-34

P17.3 For an RBF network with one input and one neuron in the hidden
layer, the initial weights and biases are chosen to be

, , , .

An input/target pair is given to be

.

Perform one iteration of steepest descent backpropagation with
.

The first step is to propagate the input through the network.

Now we backpropagate the sensitivities using Eq. (11.44) and Eq. (11.45).

Finally, the weights and biases are updated using Eq. (11.46) and Eq.
(11.47) for Layer 2, and Eq. (17.84) and Eq. (17.85) for Layer 1:

,

,

,

.

w1 0() 0= b1 0() 1= w2 0() 2–= b2 0() 1=

p 1–=() t 1=()(,)

α 1=

n1 p w1– b1 1 1– 0–()2 1= = =

a1 radbas n1() e n2– e 1– 0.3679= = = =

n2 w2a1 b2+ 2–() 0.3679() 1+ 0.2642= = =

a2 purelin n2() n2 0.2642= = =

e t a2–() 1 0.2642()–() 0.7358= = =

s2 2F· 2 n2() t a–()– 2 1[] e()– 2 1[]0.7358– 1.4716–= = = =

s1 F· 1 n1() W2()
T
s2 2n1[]w2s2 2 1×[] 2–() 1.4716–() 5.8864= = = =

w2 1() w2 0() αs2 a1()
T

– 2–() 1 1.4716–() 0.3679()– 1.4586–= = =

w1 1() w1 0() αs1 b1 w1 p–()

p w1–

⎝ ⎠
⎜ ⎟
⎛ ⎞

– 0() 1 5.8864() 1 0 1–()–()
1– 0–

----------------------------⎝ ⎠
⎛ ⎞– 5.8864–= = =

b2 1() b2 0() αs2– 1 1 1.4716–()– 2.4716= = =

b1 1() b1 0() αs1 p w1–– 1 1 5.8864() 1– 0–– 4.8864–= = =

Epilogue

17-35

17
Epilogue

The radial basis function network is an alternative to the multilayer per-
ceptron network for problems of function approximation and pattern recog-
nition. In this chapter we have demonstrated the operation of the RBF
network, and we have described several techniques for training the net-
work. Unlike the MLP network, RBF training usually consists of two stag-
es. In the first stage, the weights and biases in the first layer are found. In
the second stage, which typically involves linear least squares, the second
layer weights and biases are calculated.

17 Radial Basis Networks

17-36

Further Reading

[Bish91] C. M. Bishop, “Improving the generalization properties of
radial basis function neural networks,” Neural Computa-
tion, Vol. 3, No. 4, pp. 579-588, 1991.

First published use of the expectation-maximization algo-
rithm for optimizing cluster centers for the radial basis net-
work.

[BrLo88] D.S. Broomhead and D. Lowe, “Multivariable function in-
terpolation and adaptive networks,” Complex Systems,
vol.2, pp. 321-355, 1988.

This seminal paper describes the first use of radial basis
functions in the context of neural networks.

[ChCo91] S. Chen, C.F.N. Cowan, and P.M. Grant, “Orthogonal least
squares learning algorithm for radial basis function net-
works,” IEEE Transactions on Neural Networks, Vol.2,
No.2, pp.302-309, 1991.

The first description of the use of the subset selection tech-
nique for selecting centers for radial basis function net-
works.

[ChCo92] S. Chen, P. M. Grant, and C. F. N. Cowan, “Orthogonal
least squares algorithm for training multioutput radial ba-
sis function networks,” Proceedings of the Institute of Elec-
trical Engineers, Vol. 139, Pt. F, No. 6, pp. 378–384, 1992.

This paper extends the orthogonal least squares algorithm
to the case of multiple outputs.

[ChCh96] S. Chen, E. S. Chng, and K. Alkadhimi, “Regularised or-
thogonal least squares algorithm for constructing radial
basis function networks,” International Journal of Control,
Vol. 64, No. 5, pp. 829–837, 1996.

Modifies the orthogonal least squares algorithm to handle
regularized performance indices.

[ChCo99] S. Chen, C.F.N. Cowan, and P.M. Grant, “Combined Genet-
ic Algorithm Optimization and Regularized Orthogonal
Least Squares Learning for Radial Basis Function Net-
works,” IEEE Transactions on Neural Networks, Vol.10,
No.5, pp.302-309, 1999.

Combines a genetic algorithm with orthogonal least
squares to compute the regularization parameter and basis

Further Reading

17-37

17
function spread, while also selecting centers and solving for
the optimal second layer weights of radial basis function
networks.

[Lowe89] D. Lowe, “Adaptive radial basis function nonlinearities,
and the problem of generalization,” Proceedings of the First
IEE International Conference on Artificial Neural Net-
works, pp. 171 - 175, 1989.

This paper describes the use of gradient-based algorithms
for training all of the parameters of an RBF network, in-
cluding basis function centers and widths. It also provides
a formula for setting the basis function widths, if the cen-
ters are randomly chosen from the training data set.

[Mill90] A.J. Miller, Subset Selection in Regression. Chapman and
Hall, N.Y., 1990.

This book provides a very complete and clear discussion of
the general problem of subset selection. This involves
choosing an appropriate subset from a large set of indepen-
dent input variables, in order to provide the most efficient
prediction of some dependent variable.

[MoDa89] J. Moody and C.J. Darken, “Fast Learning in Networks of
Locally-Tuned Processing Units,” Neural Computation,
Vol. 1, pp. 281–294, 1989.

The first published use of clustering methods to find radial
basis function centers and variances.

[OrHa00] M. J. Orr, J. Hallam, A. Murray, and T. Leonard, “Assess-
ing rbf networks using delve,” IJNS, 2000.

This paper compares a variety of methods for training radi-
al basis function networks. The methods include forward
selection with regularization and also regression trees.

[Powe87] M.J.D. Powell, “Radial basis functions for multivariable in-
terpolation: a review,” Algorithms for Approximation, pp.
143-167, Oxford, 1987.

This paper provides the definitive survey of the original
work on radial basis functions. The original use of radial
basis functions was in exact multivariable interpolation.

[PaSa93] J. Park and I.W. Sandberg, “Universal approximation us-
ing radial-basis-function networks,” Neural Computation,
vol. 5, pp. 305-316, 1993.

This paper proves the universal approximation capability
of radial basis function networks.

17 Radial Basis Networks

17-38

Exercises

E17.1 Design an RBF network to perform the classification illustrated in Figure
E17.1. The network should produce a positive output whenever the input
vector is in the shaded region and a negative output otherwise.

Figure E17.1 Pattern Classification Regions

E17.2 Choose the weights and biases for an RBF network with two neurons in the
hidden layer and one output neuron, so that the network response passes
through the points indicated by the blue circles in Figure E17.2.

Use the MATLAB® Neural Network Design Demonstration RBF Network
Function (nnd17rbnf) to check your result.

Figure E17.2 Function Approximation Exercise

−2 −1 0 1 2
−1

0

1

2

3

Exercises

17-39

17
E17.3 Consider a 1-2-1 RBF network (two neurons in the hidden layer and one

output neuron). The first layer weights and biases are fixed as follows:

, .

Assume that the bias in the second layer is fixed at 0 (). The training
set has the following input/target pairs:

, , .

i. Use linear least squares to solve for the second layer weights, as-
suming that the regularization parameter .

ii. Plot the contour plot for the sum squared error. Recall that it will be
a quadratic function. (See Chapter 8.)

iii. Write a MATLAB® M-file to check your answers to parts i. and ii.

iv. Repeat parts i. to iii., with . Plot regularized squared error.

E17.4 The Hessian matrix for the performance index of the RBF network, given
in Eq. (17.25), is

.

Show that this matrix is at least positive semidefinite for , and show
that it is positive definite if .

E17.5 Consider an RBF network with the weights and biases in the first layer
fixed. Show how the LMS algorithm of Chapter 10 could be modified for
learning the second layer weights and biases.

E17.6 Suppose that a Gaussian transfer function in the first layer of the RBF net-
work is replaced with a linear transfer function.

i. In Solved Problem P11.8, we showed that a multilayer perceptron
with linear transfer functions in each layer is equivalent to a single-
layer perceptron. If we use a linear transfer function in each layer
of an RBF network, is that equivalent to a single-layer network? Ex-
plain.

ii. Work out an example, equivalent to Figure 17.4, to demonstrate the
operation of the RBF network with linear transfer function in the
first layer. Use MATLAB® to plot your figures. Do you think that
the RBF network will be a universal approximator, if the first layer
transfer function is linear? Explain your answer.

W1 1–

1
= b1 0.5

0.5
=

b2 0=

p1 1= t1 1–=,{ } p2 0= t2 0=,{ } p3 1–= t3 1=,{ }

ρ 0=

» 2 + 2

ans =
 4

ρ 4=

2 UTU ρI+[]

ρ 0≥
ρ 0>

» 2 + 2

ans =
 4

17 Radial Basis Networks

17-40

E17.7 Write a MATLAB® program to implement the linear least squares algo-
rithm for the RBF network with first layer weights and biases
fixed. Train the network to approximate the function

 for .

i. Select 10 training points at random from the interval .

ii. Select four basis function centers evenly spaced on the interval
. Then, use Eq. (17.9) to set the bias. Finally, use linear

least squares to find the second layer weights and biases, assuming
that there is no regularization. Plot the network response for

, and show the training points on the same plot. Compute
the sum squared error over the training set.

iii. Double the bias from part ii and repeat.

iv. Decrease the bias by half from part ii, and repeat.

v. Compare the final sum squared errors for all cases and explain your
results.

E17.8 Use the function described in Exercise E17.7, and use an RBF network
with 10 neurons in the hidden layer.

i. Repeat Exercise E17.7 ii. with regularization parameter .
Describe the changes in the RBF network response.

ii. Add random noise to the training targets. Repeat Exercise E17.7 ii.
with no regularization and with regularization parameter

. Which case produces the best results. Explain.

E17.9 Write a MATLAB® program to implement the orthogonal least squares al-
gorithm. Repeat Exercise E17.7 using the orthogonal least squares algo-
rithm. Use the 10 random training point inputs as the potential centers,
and use Eq. (17.9) to set the bias. Use only the first four selected centers.
Compare your final sum squared errors with the result from E17.7 part ii.

E17.10 Write a MATLAB® program to implement the steepest descent algorithm
for the RBF network. Train the network to approximate the func-
tion

 for .

You should be able to use a slightly modified version of the program you
wrote for Exercise E11.11.

1 S1– 1–» 2 + 2

ans =
 4

g p() 1 π
8
---p⎝ ⎠
⎛ ⎞sin+= 2– p 2≤ ≤

2– p 2≤ ≤

2– p 2≤ ≤

2– p 2≤ ≤

» 2 + 2

ans =
 4

ρ 0.2=

ρ 0.2 2 20, ,=

» 2 + 2

ans =
 4

1 S1– 1–
» 2 + 2

ans =
 4

g p() 1 π
8
---p⎝ ⎠
⎛ ⎞sin+= 2– p 2≤ ≤

Exercises

17-41

17
i. Select 10 data points at random from the interval .

ii. Initialize all parameters (weights and biases in both layers) as
small random numbers, and then train the network to convergence.
(Experiment with the learning rate , to determine a stable value.)
Plot the network response for , and show the training
points on the same plot. Compute the sum squared error over the
training set. Use 2, 4 and 8 centers.

iii. Repeat part ii., but use a different method for initializing the pa-
rameters. Start by setting the parameters as follows. First, select
basis function centers evenly spaced on the interval .
Then, use Eq. (17.9) to set the bias. Finally, use linear least squares
to find the second layer weights and biases. Compute the squared
error for these initial weights and biases. Starting from these initial
conditions, train all parameters with steepest descent.

iv. Compare the final sum squared errors for all cases and explain your
results.

E17.11 Suppose that a radial basis function layer (Layer 1 of the RBF network)
were used in the second or third layer of a multilayer network. How could
you modify the backpropagation equation, Eq. (11.35), to accommodate this
change. (Recall that the weight update equations would be modified from
Eq. (11.23) and Eq. (11.24) to Eq. (17.84) and Eq. (17.85).)

E17.12 Consider again Exercise E14.7, in which you trained a feature map to clus-
ter the input space

, .

Assume that over this input space, we wish to use an RBF network to ap-
proximate the following function:

.

i. Use MATLAB to randomly generate 200 input vectors in the region
shown above.

ii. Write a MATLAB M-file to implement a four-neuron by four-neuron
(two-dimensional) feature map. Calculate the net input by finding
the distance between the input and weight vectors directly, as is
done by the LVQ network, so the vectors do not need to be normal-
ized. Use the feature map to cluster the input vectors.

iii. Use the trained feature map weight matrix from part ii as the
weight matrix of the first layer of an RBF network. Use Eq. (17.79)
to determine the average distance between each cluster and its cen-
ter, and then use Eq. (17.80) to set the bias for each neuron in the

2– p 2≤ ≤

α
2– p 2≤ ≤

2– p 2≤ ≤

0 p1 1≤ ≤ 2 p2 3≤ ≤

t 2πp1()sin 2πp2()cos=

» 2 + 2

ans =
 4

17 Radial Basis Networks

17-42

first layer of the RBF network.

iv. For each of the 200 input vectors in part i, compute the target re-
sponse for the function above. Then use the resulting input/target
pairs to determine the second-layer weights and bias for the RBF
network.

v. Repeat parts ii to iv, using a two by two feature map. Compare your
results.

