Recursive Orthogonal L east Squares L earning with Automatic Weight Selection
for Gaussian Neural Networks

Meng H. Fun, mhfun@yahoo.com, Oklahoma State University
Martin T. Hagan, mhagan@master.ceat.okstate.edu, Oklahoma State University

Abstract

Gaussian neural networks have always suffered from the
curse of dimensionality; the number of weights needed
increases exponentially with the number of inputs and out-
puts. Many methods have been proposed to solve this prob-
lem by optimally or sub-optimally selecting the weights or
centers of the Gaussian neural network [1],[2]. However,
most of these attempts are not suitable for online imple-
mentation. In this paper, we develop a Recursive Orthogo-
nal Least Squares learning with Automatic Weight
Sdlection (ROLSAWS) for a two-layered Gaussian neural
network. This ROLS-AWS algorithm is capable of selecting
useful weights sub-optimally and recursively. In doing so,
we will not only reduce the growth of the size of the weights
but also minimizes the number of weights used. Due to the
recursive nature of this algorithm, it can be applied to any
online system, as in control and signal processing applica-
tions.

I ntroduction

The Radial Basis Function (RBF) network often requires
many hidden nodes due to their localized character. For
practical purposes, it is desirable to construct the smallest
possible RBF network. Many applications that use the RBF
network have opted to use fixed centers or fixed grid size to
limit the number of nodes used [6],[7]. However, this
approach has often leads to large weights. On the other
hand, the Orthogonal Least Squares (OLS) learning algo-
rithm proposed by S. Chen [2], is a simple and efficient
algorithm for fitting the RBF network. It also has the capa-
bility to select smaller weight and to create a parsimonious
network model. However, one drawback with this algo-
rithm is that the training is done in batch mode only.

In this paper, we will develop the Recursive Orthogonal
Least Squares Learning with Automatic Weight Selection
(ROLS-AWS) algorithm, which is based on batch orthogo-
nal least squares learning. Generally, there are three meth-
ods to choose the centers and the variances: the fixed
centers method, the self-organized learning method (e.g. k
mean clustering method), and the stochastic gradient
method [3]. Here we will only explore the fixed centers

method. Such an approach is first described by Broome-
head & Lowe [4], and was then extended by S. Chen, who
developed the orthogonal least squares learning method [2].
The fixed centers method considered here is alittle differ-
ent than the standard method, to accommodate for the
recursion in time. We first assume that each available data
point will be a potential centers for the RBF network.
When adata point is available, the center for that data point
is available as well. Meanwhile, the variances are fixed.
Such an RBF network is linear in the parameters, since all
RBF centers and non-linearities in the hidden layer are
fixed.

In the ROLS-AWS agorithm, we will show that by com-
bining the QR Decomposition Recursive Least Squares
algorithm (QRD-RLS) and the forward subset selection
method, we can create a Recursive Orthogonal Least
Squares learning algorithm that can automatically select the
centers and the weights. We prove that, if x; and x;,, are
the old and new weight vectors, respectively, then the algo-
rithm will select the optimal new weight vector x;,, given
the old weight vector x;. We also show that this sub-opti-
mal solution is the same solution obtained by the batch for-
ward selection method. This algorithm not only allows the
Gaussian network to learn recursively in time but also adds
necessary centers and weights when needed. Furthermore,
the weight size is kept to a minimum, as the RBF network
beginswith just abias, but grows in size with useful centers
and weights that are selected sub-optimally.

Radial Basis Function (RBF) Network

The RBF network considered in this paper is a standard
two-layered neural network with Gaussian non-linearity in
the hidden layer and linear transfer function in the output
layer. The output of the RBF network is computed accord-
ing to the following linear equation:

y = f(x) = é, w;A;(-lp—cj|?es2) + b (1)
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where

is the width of the Gaussian function;
is the network input vector;

is the center vector of the it node;

is the Euclidean norm;

is the number of nodes;

is the Gaussian node outpuit;

isthe it weight;

isthe bias.
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Since a multi-output RBF network can always be separated
into a group of single-output RBF networks, we will con-
sider the single-output case only. The Gaussian function
width s isfixed, while the centers ¢; are selected from the
data points. Every time a data point is presented to the net-
work, the network creates a center based on that data point.
These centers become potential centersthat may be used by
the RBF network. Let A denote all possible centers pre-
sented by the data points, then

Al {AA, @)
where A contains the centers selected by the RBF network
and A contains the centers not selected by the RBF net-
work. Also, note that when anew center, a;, isaddedto A,
a1l A and ai A. Only when the agorithm determines
that a; isthe necessary center, then ;7 A and a1 A.

Since the centers and the Gaussian width are fixed, we can
view the RBF network as alinear regression model

d = Ax+e ©)
where

d = [d(1) v d(n) (4
X = [w11/4 Wiy kﬂT- ©®)
e = [e(1) v e(N) - ©®)

a(1) a,(1) 7 ay(1)
A = a2 @

aN) ¥ ay(N)

is the desired output vector, the parameter vector, the error
vector and the regressor matrix, respectively.

Recursive Orthogonal L east Squareswith
Automatic Weight Selection Algorithm
In this section, we show that by combining the QR Decom-
position Recursive Least Squares (QRD-RLS) algorithm
with the forward subset selection algorithm, we can create
an algorithm that can recursively select the centers and
recursively update the weights. We call this algorithm the
Recursive Orthogonal Least Squares with Automatic
Weight Selection (ROLS-AWS). This algorithm consists of
two steps: a time update and an order update. In the time

update, when a new observation aT(k) and a new desired
response d(k) are added to equation (3)

[Ai(k—l)} X (K) = [d(k—l)} ®)
a’(k) d(k)
then the updated solution x(k) satisfies

(AT(k=1)Aj(k—1) + & (K)aT(k))x;(k) = ©

AT(k=1)d(k—1) +a(k)d(Kk)

The above equation can be solved using the Recursive
Least Squares (RLS) [8],[9],[10]. Although RLS isfast, it
does have some numerical stability problems [3]. A more
accurate solution to equation (9) can be obtained with the
QR Decomposition Recursive Least Squares algorithm
(QRD-RLS) in pre-array and post-array form. This algo-
rithm has better numerical stability propertiesthan RLS[5],
[3].

The QRD-RL S algorithm begins by initializing

RT(0) = 0, g(0) =0 (10)
where

Ai(k) = Qi(KR;(K) , (11)

g'(k) = xT(K)R(k) (12)

and R;(k) isaupper triangular matrix.

Then, for k = 1, 2% calculate,

RT(k—1) a(k) RT(K) 0
gT(k=1) d7(k)|QiK) = | gT(k)  kT2k)xT(k)| (13)
o7 1 al(KR(k)  k=2(k)
where
x(k) = d(k) —aT(k)xj(k-1), (14
k(k) = 1+ a7 (KR (k—1)RiT(k—1)a(K) , (15)
and
xi'(K) = g(KR7T(K) (16)

solves the weights update.

This QRD-RLS pre-array and post-array formulation pre-
sents a nice framework for solving the RLS problem. Spe-
cifically, the Q;(k) is a Given rotation that operates on the
elements of the input vector a(k) inthe pre-array matrix. It
annihilates the elements one by one to produce a block zero
entry in the top block row of the post-array. The lower tri-
angular structure of RT(k), is preserved in its exact form
before and after the transformation. By completing the
annihilation on the pre-array matrix, we obtained the post-
array matrix which consists of the new R/(k) and g(k).
The least squares weight vector x;(k) is solved using the
methods of back substitution with equation (16). The whole
process of QRD-RLS is repeated by substituting RT(k),
g (k) , the new observation a;(k) and the new desired tar-



get d(k) into the pre-array and repeat the annihilation pro-
cess again. To accommodate for the order update, the
QRD-RLS checks to see if an order update is necessary
before it repeats the annihilation process.

For the following order update derivation, we will drop the
timeindex k sincethetimeisfixed. For the order update, a
new center is created simultaneously when a data point is
created. This data point, &, isfirst added to the set of cen-
ters not selected by the RBF network.

AK) = [a, % a ¥ ay) 17)
Only when the algorithm determines that a; is the center

that minimizes the network error, is a; incorporated into
the RBF network.

To choose which center will minimize the network error,
let a; be one of the center vectorsthat are added to A, ,

Ai+l = [AI a;| . (18)
Also, let x; bethe solution to the normal equation
ATAx, = ATd, (19)

and x;,, be the new normal equation solution with A, ;,
then the solution can be written as

ATA; AfTg; -
Xi+1 =
a'A; a'a

AT d] . (20)
a'd

Let A; = Q;R; where Q; isan orthogonal matrix and R; is
an upper triangular matrix, then

RTR; RQg X1 = Afd| (21)
a’'QR; afa a'd

The sum of squares error of the above equation is

el.16.1 = e'e —ri2((a—Q;Qfa)d)? (22)
where
g =d-Ax =d-QQd (23)
and
r = f\/(ai_QiQiTai)T(ai_QiQiTai)' (24)

If we divide both sides of equation (22) by the desired sum
of squares d7d , which is a constant, then we obtain

eL1€6.1 _ €€ (2 —QiQi'a)"d)? (25)

dd ~ dd (a-QQfa) (a-QQla)dTd’

This has a solution that is identical to the forward subset
selection algorithm [11]. The error measurement term

((a —QiQfa)d)?
(2 —QiQfa)™(a - QQa)d™d
isthe error reduction ratio in [2]. Geometrically, if we com-
pare this error reduction ratio to the definition of the princi-
ple cosine angle between two vectors y and z [12]:

err; =

1EiEM  (26)

co2(q) = yJTyLZ)% . (27)

We can see that the err; measuresthe cosine squared angle
between the projected a;, a,—Q;Qa;, and the desired vec-
tor d. Maximizing err; will maximize the angle between
the projected a; and d . Essentially, err; providesaway to
measure how much does a, (the center that has not been
selected) contribute to the total error in the RBF network.
This calculation is applied to each center not selected A by
the RBF network. We are guaranteed to optimally mini-
mize the new sum of squares error, €, €, ,, by choosing
the a; that maximizes err; .

Furthermore, by setting a threshold value u on this term,
we can decide whether to update or not to update the order.
If al the err; valuesfall below thisthreshold value u, then
the RBF network is adequate with the present weights and
no order update is necessary. On the other hand, if some
err; vaues fal above the threshold value u, then that
implies that the network is not adequate with the present
weights and an order update is necessary. Hence, the maxi-
mum err; is picked, and the corresponding center is incor-
porated into the RBF network.

Note that to obtain this error reduction calculation, we need
to obtain Q; from the R; matrix of the QRD-RLS, by solv-
ing the following equation via back substitution,

Qi = AR, (28)

If an order update is necessary, (compare err; to the thresh-
old value u) then we will select the a, that maximizes the
err; and will includethat into A, ; :

Ai+1 = I:Ai aJ ' (29)
Also, thenew R, ; iscalculated through
R,y = | RO (30)
a'Q; ry
and the new weight is updated through
Xioqg = Xi—RiQlar ?a'e _ (31)
rizale

Lastly, to complete the ROLS-AWS agorithm, we calcu-
late

g 1(K) = X7 1 (KR 1 (K) - (32)
Once equation (29), (30), (31), and (32) are updated, these
equations are converted to the pre-array matrix, equation
(13), of the QRD-RLS algorithm and the whole process is
repeated.

In practice, this RBF network begins with a bias and grows
in size by adding centers and weights into the network one



at atime. The ROLS-AWS method is very similar to the
batch form OLS method. However, they do have their dif-
ferences.

e The ROLSAWS operates recursively without
recal culating the whole OL S calculation.

e The potential centers in the ROLS-AWS algorithm
are limited by the data points presented to the RBF
network, while the batch OLS method has the full
range of data points to work with at start. So, it is
natural that the ROLS-AWS method selected more
centers (still smaller in size) than the batch OLS.

Result

In this section, simulation results for a simple function
approximation problem are presented. The RBF network
will be trained to approximate the following function:

y(k) = sin(k) + cos(2k) k = 0:p ©20:8.85p . (33)
The RBF network and the ROLS-AWS have the following
fixed constants s = 1, and u = 104. Also, wetrained the
function with the OL S algorithm for comparison.

Both results are plotted in Figure 1 and Figure 2. The cir-
cles represent the locations of the centers used by the RBF
network, the pluses are the target, and the solid line is the
output of the RBF network. The lower graph on each fig-
ures shows the error residual of the RBF network.

Comparing both figures, the ROLS-AWS is as good as the
batch OL S agorithm. As expected, the ROLS-AWS uses a
few more centers; 51 centers versus 44 centers out of a pos-
sible 178 centers.
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Figure 1: Batch Orthogonal Least Squares Learning
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Figure 2: Recursive Orthogonal Least Squares Learning

Interestingly, the error residual for the ROLS-AWS seems
to be higher near the newer data points. However, this
seems to be normal, as the algorithm has not been fully
adapted near the new data points.

Conclusion

This paper presents a promising algorithm that can be used
to recursively train the RBF network while sub-optimally
selecting the centers and weights. However, thereisalimi-
tation to this algorithm. The ROLS-AWS requires A to be
stored in memory. As the data points increase, the size of
A increases. Fortunately, awindowing method can be used
to overcome this limitation. This windowing agorithm is
currently under development. Also, regularization [13] can
be easily incorporated into this ROLS-AWS.
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