

Abstract

This paper describes the application of Baye-
sian regularization to the training of feedforward neural
networks. A Gauss-Newton approximation to the Hes-
sian matrix, which can be conveniently implemented
within the framework of the Levenberg-Marquardt algo-
rithm, is used to reduce the computational overhead.
The resulting algorithm is demonstrated on a simple test
problem and is then applied to three practical problems.
The results demonstrate that the algorithm produces net-
works which have excellent generalization capabilities.

1. Introduction

The results described in this paper apply to
multi-layer feedforward neural networks which are used
for nonlinear regression. The networks are trained using
supervised learning, with a training set of inputs and tar-
gets in the form . We as-
sume that the targets are generated by
where is an unknown function and is indepen-
dent Gaussian noise. The initial objective of the training
process will be to minimize the sum of squared errors:

(1)

 where represents the neural network response. This
performance index will later be modified to improve
network generalization.

The goal of neural network training is to pro-
duce a network which produces small errors on the train-
ing set, but which will also respond properly to novel
inputs. When a network is able to perform as well on
novel inputs as on training set inputs, we say that the net-

work generalizes well. Our objective in this paper is to
discuss a training algorithm which consistently produc-
es networks with good generalization. This method for
improving generalization constrains the size of the net-
work weights and is referred to as regularization [1].
The idea is that the true underlying function is assumed
to have a degree of smoothness. When the weights in a
network are kept small, the network response will be
smooth. With regularization, any modestly oversized
network should be able to sufficiently represent the true
function.

In the following section we will review regu-
larization techniques. We will then apply David MacK-
ay’s Bayesian techniques to optimize regularization [1].
The optimal regularization technique requires the com-
putation of the Hessian matrix. To minimize the compu-
tational overhead, we propose using a Gauss-Newton
approximation to the Hessian matrix. This approxima-
tion is readily available when using the Levenberg-Mar-
quardt algorithm for network training [2], [3]. Then, in
the next section we will apply this new approximation to
Bayesian regularization to a diverse set of three real
world problems.

2. Regularization

Typically, training aims to reduce the sum of
squared errors . However, regularization adds
an additional term; the objective function becomes

, where is the sum of squares of the
network weights, and and are objective function
parameters. The relative size of the objective function
parameters dictates the emphasis for training. If ,
then the training algorithm will drive the errors smaller.
If , training will emphasize weight size reduction

p1 t1,{ } p2 t2,{ } … pn tn,{ }, , ,
ti g pi() εi+=

g pi() εi

ED ti ai–()2

i 1=

n

∑=

ai F ED=

F βED αEW+= EW
α β

α<<β

α>>β

GAUSS-NEWTON APPROXIMATION
TO BAYESIAN LEARNING

F. Dan Foresee* and Martin T. Hagan**

*Lucent Technologies
Oklahoma City, OK

**School of Electrical and Computer Engineering
Oklahoma State University

Stillwater, OK

email: fdf@lucent.com, mhagan@master.ceat.okstate.edu

at the expense of network errors, thus producing a
smoother network response.

The main problem with implementing regular-
ization is setting the correct values for the objective
function parameters. David MacKay [1] has done ex-
tensive work on the application of Bayes’ rule to neural
network training and to optimizing regularization. In
the following we will show his main results as they ap-
ply to our problem.

In the Bayesian framework the weights of the
network are considered random variables. After the data
is taken, the density function for the weights can be up-
dated according to Bayes’ rule:

(2)

where represents the data set, is the particular neu-
ral network model used, and is the vector of network
weights. is the prior density, which repre-
sents our knowledge of the weights before any data is
collected. is the likelihood function,
which is the probability of the data occurring, given the
weights . is a normalization factor,
which guarantees that the total probability is 1.

If we assume that the noise in the training set
data is Gaussian and that the prior distribution for the
weights is Gaussian, the probability densities can be
written

 and

, (3)

where and . If
we substitute these probabilities into Eq. (2), we obtain

 (4)

In this Bayesian framework, the optimal weights should
maximize the posterior probability .
Maximizing the posterior probability is equivalent to
minimizing the regularized objective function

.

Optimizing the Regularization Parameters

Now we consider the application of Bayes’ rule
to optimizing the objective function parameters and

. Here, we have

(5)

If we assume a uniform prior density for the
regularization parameters and , then maximizing
the posterior is achieved by maximizing the likelihood
function . However, note that this likeli-
hood function is the normalization factor for Eq. (2).
Since all probabilities have a Gaussian form, we know
the form for the posterior density of Eq. (2). It is show
in Eq. (4). Now we can solve Eq. (2) for the normaliza-
tion factor.

(6)

Note that we know the constants and
from Eq. (3). The only part we do not know is .
However, we can estimate it by Taylor series expansion.
Since the objective function has the shape of a quadratic
in a small area surrounding a minimum point, we can ex-
pand around the minimum point of the posterior
density , where the gradient is zero. Solving for the
normalizing constant yields

(7)

where is the Hessian matrix of
the objective function. Placing this result into Eq. (6),
we can solve for the optimal values for and at the
minimum point. We do this by taking the derivative
with respect to each of the log of Eq. (6) and set them
equal to zero. This yields

 and , (8)

where is called the effective
number of parameters, and is the total number of pa-
rameters in the network. The parameter is a measure
of how many parameters in the neural network are effec-
tively used in reducing the error function. It can range
from zero to .

P w D α β M, , ,()
P D w β M, ,()P w α M,()

P D α β M, ,()
---=

D M
w

P w α M,()

P D w β M, ,()

w P D α β M, ,()

P D W β M, ,() 1
ZD β()
--------------- βED–()exp=

P w α M,() 1
ZW α()
----------------- αEW–()exp=

ZD β() π β⁄()n 2⁄
= ZW α() π α⁄()N 2⁄

=

P w D α β M, , ,()

1
ZW α()
----------------- 1

ZD β()
--------------- βED αEW+()–()exp

Normalization Factor
--=

1
ZF α β,()
---------------------- F w()–()exp=

P w D α β M, , ,()

F βED αEW+=

α
β

P α β D M,,()
P D α β M, ,()P α β M,()

P D M()
---=

P α β M,()
α β

P D α β M, ,()

P D α β M, ,()
P D w β M, ,()P w α M,()

P w D α β M, , ,()
---=

1
ZD β()
--------------- βED–()exp

1
ZW α()
----------------- αEW–()exp

1
ZF α β,()
---------------------- F w()–()exp

--=

ZF α β,()
ZD β()ZW α()

βED αEW––()exp

F w()–()exp

ZF α β,()
ZD β()ZW α()
---------------------------------=⋅=

ZD β() ZW α()
ZF α β,()

F w()
wMP

ZF 2π()N 2⁄
det HMP()

1–
()()

1 2⁄
F wMP()–()exp≈

H β ED α EW∇ 2+∇ 2=

α β

αMP γ

2EW wMP()
----------------------------= βMP n γ–

2ED wMP()
---------------------------=

γ N 2αMP
tr HMP()

1–
–=

N
γ

N

Gauss-Newton Approximation to the Hessian

The Bayesian optimization of the regulariza-
tion parameters requires the computation of the Hessian
matrix of at the minimum point . We pro-
pose using the Gauss-Newton approximation to Hessian
matrix, which is readily available if the Levenberg-Mar-
quardt optimization algorithm is used to locate the min-
imum point ([2]-[4]). The additional computation
required for optimization of the regularization is mini-
mal.

Here are the steps required for Bayesian opti-
mization of the regularization parameters, with the
Gauss-Newton approximation to Hessian matrix:

0. Initialize , and the weights. We choose to
set and and use the Nguyen-
Widrow method of initializing the weighs [5].
After the first training step, the objective func-
tion parameters will recover from the initial
setting.

1. Take one step of the Levenberg-Marquardt al-
gorithm to minimize the objective function

.

2. Compute the effective number of parameters
 making use of the Gauss-

Newton approximation to the Hessian avail-
able in the Levenberg-Marquardt training algo-
rithm: , where

 is the Jacobian matrix of the training set er-
rors [2].

3. Compute new estimates for the objective func-
tion parameters and

.

4. Now iterate steps 1 through 3 until conver-
gence.

Bear in mind that with each reestimate of the
objective function parameters the objective function is
changing; therefore, the minimum point is moving. If
traversing the performance surface generally moves to-
ward the next minimum point, then the new estimates
for the objective function parameters will be more pre-
cise. Eventually, the precision will be good enough that
the objective function will not significantly change in
subsequent iterations. Thus, we will obtain conver-
gence.

When this Gauss-Newton approximation to
Bayesian regularization (GNBR) algorithm is used, the
best results are obtained if the training data is first
mapped into the range [-1,1] (or some similar region).
We typically scale both inputs and outputs.

After training, there are some casual checks
that should be administered. First, if the final effective
number of parameters is very close to the actual num-

ber of parameters , then the neural network may not be
large enough to properly represent the true function. In
this case, simply add more hidden layer neurons and re-
train. If the larger network has the same final , then the
smaller network was large enough. Otherwise, more
hidden layer neurons may need to be added. The second
check is one of consistency of results. If the network is
sufficiently large, then a second larger network will
achieve comparable values for , and .

Now we will show an example of GNBR train-
ing. For this simple test we will use a triangular wave-
form. The training set consists of one hundred data
points with Gaussian noise of zero mean and 0.01 vari-
ance added to sampled points of the triangle wave. Fig-
ure 1 shows the resulting functions for a 1-6-1 network
without regularization and a 1-6-1 network trained with
the GNBR algorithm. Note the overfitting that occurs
without regularization.

Figure 1 Approximation of the Triangle Wave

Table 1 summarizes the results for training
many different networks of the 1-S-1 architecture. No-
tice how the effective number of parameters is con-

F w() wMP

α β
α 0= β 1=

F w() βED αEW+=

γ N 2α tr H() 1–
–=

H F w() 2βJTJ 2α I N+≈∇ 2=

J

α γ
2EW w()
---------------------=

β n γ–
2ED w()
--------------------=

γ
N

γ

γ ED EW

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1.5

−1

−0.5

0

0.5

1

1.5

1-6-1 Network Without Regularization

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1.5

−1

−0.5

0

0.5

1

1.5

1-6-1 Network With Bayesian Regularization

γ

stant for any network with at least 4 hidden layer
neurons. This is the minimum size network required to
properly represent the true function. The actual number
of parameters can increase to 43, providing thirty su-
perfluous parameters, and yet we still get very consistent
results. As noted before, the and functions re-
main constant as the size of network is increased. Also,
because we know the true function, we can calculate the
actual errors. This is designated as in the table. This
function is also very stable for any sufficiently complex
network. The GNBR algorithm has produced optimal
results for all networks of at least the minimal size.
Thus, in contrast to some other techniques, the GNBR
algorithm has the capability to produce optimal results
the first time. Further, the cost of implementing the
changes in the training algorithm was minimal since we
are using the Gauss-Newton approximation to the Hes-
sian for computation.

Experiments

To test the GNBR algorithm, we chose three
real-world problems: a single-input/single-output re-
gression, a time series prediction and an artificial chaot-
ic series model.

Single-Input/Single-Output Regression

The first test set contains ages and weight-to-
height ratios for preschool boys [6]. Figure 2 shows the
normalized data “+” along with a trained neural network
response. Table 2 summarizes the training results for
several different networks of the 1-S-1 architecture. (
is the error on a test set containing 10% of the data which
was held out from the training set.) Notice that for all
models with the errors and are the same. The
GNBR algorithm produces consistent results, and the
network response in Figure 2 clearly generalizes well.

Figure 2 Normalized Preschool Boys’ Data

Chaotic Series

The Mackey-Glass chaotic equation [7] is

(9)

For our test we set the characteristic parameters to
, and . Letting , we it-

erated the equation to produce a time series. Skipping
the first 1000 iterates (transient period), we captured the
second 1000 points. The data is shown in Figure 3. We
then normalized the data set and took the last 100 points
(10%) as a testing set. A two-input/single-output net-
work was then trained to predict the next time point from
the current time point and the time point 17 time steps
back.

Table 3 summarizes the training of 2-S-1 net-
works on the Mackey-Glass data. The effective number
of parameters reached a maximum of 22 with the 2-7-1
network. Even though the actual number of parameters
is increased, the effective number of parameters re-
mained roughly constant, indicating that the 2-7-1 net-
work is the smallest network with sufficient complexity
to fit the data. In the lower graph of Figure 3 the predic-

Table 1 Triangle wave results

2 1.612 203.0 0.5031 7 5.659

3 1.214 187.8 0.1954 10 8.468

4 1.144 177.0 0.1080 13 9.843

5 1.143 177.2 0.1085 16 9.906

6 1.143 177.2 0.1088 19 9.908

8 1.143 177.1 0.1091 25 9.911

10 1.142 177.1 0.1093 31 9.913

14 1.142 177.0 0.1095 43 9.915

N

ED EW

EA

S ED EW EA N γ

ET

S 4≥ γ

Table 2 Boy’s Data

1 1.262 15.42 0.0475 4 3.055

2 0.443 45.65 0.0095 7 5.984

3 0.444 43.37 0.0087 10 6.059

4 0.441 41.63 0.0124 13 7.244

6 0.441 41.63 0.0124 19 7.244

8 0.441 41.63 0.0124 25 7.244

10 0.441 41.63 0.0124 31 7.244

20 0.441 41.63 0.0124 61 7.244

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Age

W/H

S ED EW ET N γ

ẋ t() ax t τ–()

1 x t τ–()10
+

-------------------------------- bx t()–=

a 0.2= b 0.1= τ 17= ∆t 1=

tions of the 2-7-1 network are indicated by “x” and the
actual data points are indicated by “o”.

Figure 3 Mackey-Glass Data

Sunspot Data

The next experimental set is the annual average
sunspot observations from 1700-1988 [8]. This data is
displayed in Figure 4. Box and Jenkins [9] suggest a
second order autoregressive model for this time series.
Thus, networks with architecture 2-S-1 were used to
predict the next year’s sunspot activity from the activity
in the previous two years.

Table 4 summarizes the results of training on
the sunspot data. The optimal network architecture is
found to be 2-4-1. If we increase S beyond 4 the effec-
tive number of parameters remains constant. The sum of
squared error on the training and test sets is consistent
with the results described in [9].

Figure 4 Sunspot Data

Table 3 Mackey-Glass Data

1 2.5320 68.56 0.4012 5 4.077

2 0.0986 107.2 0.0147 9 8.178

3 0.0853 98.81 0.0124 13 11.82

4 0.0744 14.70 0.0108 17 16.71

5 0.0738 15.07 0.0108 21 19.47

6 0.0738 14.88 0.0108 25 20.91

7 0.0738 14.41 0.0108 29 22.07

8 0.0738 14.41 0.0108 33 22.08

12 0.0737 15.27 0.0108 49 21.61

S ED EW ET N γ

0 100 200 300 400 500 600 700 800 900 1000
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

880 900 920 940 960 980 1000
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x t()

x t()

t

t

Table 4 Sunspot Data

1 6.999 3.993 1.474 5 4.507

2 5.426 13.88 1.123 9 8.030

3 5.297 13.61 1.459 13 10.55

4 5.105 13.79 1.187 17 12.52

8 5.105 13.79 1.187 33 12.52

10 5.105 13.79 1.187 41 12.52

30 5.105 13.79 1.187 121 12.52

0 50 100 150 200 250 300
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

255 260 265 270 275 280 285 290
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

S ED EW ET N γ

Summary and Conclusions

In this paper we have discussed the use of
Bayesian regularization to prevent overfitting in neural
network training. The Bayesian framework developed
by David MacKay allows the optimal setting of the reg-
ularization parameters. One drawback of this Bayesian
approach is that it requires the computation of the Hes-
sian matrix of the performance index. In this paper we
have introduced the GNBR algorithm, which uses a
Gauss-Newton approximation to the Hessian matrix.
The additional overhead of this Gauss-Newton approxi-
mation to Bayesian regularization is minimal when the
Levenberg-Marquardt optimization algorithm is used to
locate the optimal weights. Tests on several practical
problems demonstrate that the GNBR algorithm pro-
vides good generalization in a number of settings.

References

[1] D. J. C. MacKay, “Bayesian Interpolation,” Neu-
ral Computation, vol. 4, pp. 415-447, 1992.

[2] M. T. Hagan, H. B. Demuth and M. Beale, Neural
Network Design, Boston: PWS Publishing Co.,
1996.

[3] M. T. Hagan and M. Menhaj, “Training multilay-
er networks with the Marquardt algorithm,” IEEE
Transactions on Neural Networks, vol. 5, no. 6,
1994, pp. 989-993.

[4] F. D. Foresee, Generalization and Neural Net-
works, Ph.D. Dissertation, Oklahoma State Uni-
versity, 1996.

[5] D. Nguyen and B. Widrow, “Improving the learn-
ing speed of 2-layer neural networks by choosing
initial values of the adaptive weights,” Proceed-
ings of the IJCNN, vol. 3, pp. 21–26, July 1990.

[6] E. S. Eppright, H. M. Fox, B. A. Fryer, G. H.
Lamkin, V. M. Vivian and E. S. Fuller, “Nutrition
of Infants and Preschool Children in the North
Central Region of the United States of America,”
World Rev. Nutrition and Dietetics, vol. 14, pp.
269-332, 1972.

[7] M. Plutowski, G. Cottrell and H. White, “Experi-
ence with Selecting Exemplars from Clean Data,”
Neural Networks, vol. 9, pp. 273-294, 1996.

[8] H. Tong, Non-linear Time Series: A Dynamical
System Approach, New York: Oxford University
Press, 1990.

[9] G. E. P. Box and G. M. Jenkins, Time Series Anal-
ysis Forecasting and Control, Englewood Cliffs,
N.J.: Prentice-Hall, Inc., 1976.

