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Abstract
In this paper we investigate the training of time-lagged
recurrent networks having multiple feedback paths and
tapped-delay inputs. Network structures of this type are
useful in approximating nonlinear dynamical systems.  The
introduction of additional feedback loops into a network
structure may improve the modeling capability of the net-
work, but a significant price can be paid in complexity and
computational burden when calculating the dynamic deriv-
atives needed for training.  The focus of this paper is on the
calculation of the dynamic derivatives which must be deter-
mined or approximated in order to use any of the popular
methods employed in training neural networks.  In this
paper we illustrate the effect of multiple feedback loops on
the formulation of the equations needed for calculating the
dynamic derivatives.  We also investigate the effect on net-
work performance and computational complexity when
various dynamic derivative approximations are used in
training multiple feedback loop networks.   

1. Introduction
There is much interest in applying neural networks to solve
complex problems in areas such as controls and signal pro-
cessing.  These applications often require neural network
modeling or control of real dynamic systems which can
only be accomplished by using recurrent network structures
which have dynamic modeling capabilities.  In working
with these systems it is generally necessary to construct
neural models having multiple connections which appear as
feedback loops or feed-forward paths.  Additionally, these
connections often contain tapped-delay lines.  The presence
of feedback loops or feed-forward connections containing
tapped-delays necessitates time-based computation of
dynamic derivatives [1].  This paper focuses on how the
dynamic derivative equations are determined for multi-loop
networks and what effect they have on computational bur-
den for training.  The first section of this paper describes
time-lagged recurrent networks, dynamic backpropaga-
tion, and presents some multi-loop network examples.
Descriptions for the associated dynamic derivative equa-
tions are given as well.  In the next section we discuss the
impact of feedback loops and tapped-delay lines on compu-
tational and storage requirements.  Finally, simulation
results for a multi-loop network simulation using full

dynamic backpropagation and two derivative approxima-
tions are presented. 

2. Time-lagged Recurrent Networks
Neural networks can assume many different structures.
Static network structures contain only “forward” connec-
tions in which the output of a particular layer is always
applied as input to a subsequent layer, or in the case of the
last layer, becomes the network output.  In static networks
the network output is only a function of the current inputs,
and is not dependent on previous network inputs.  If how-
ever, the output of any layer in a network is used as feed-
back input to that layer or any previous layer, the network
is not static, but is dynamic in nature, and is commonly
called a recurrent network [2].  In a recurrent network the
current output is dependent on previous network outputs.
Many real systems exhibit dynamic behavior, and thus
there is a good deal of interest in using recurrent neural net-
works as system models in many applications.  There is an
analogous relationship between  FIR and IIR systems mod-
els and static and recurrent neural networks respectively.
Static neural networks can be considered a subset of recur-
rent networks.  In filtering and controls applications it is
common to use tapped-delay lines to construct the inputs to
a neural network both for input sequences and in feedback
loops.  Figure 1 shows an example recurrent network with
tapped-delay inputs.

Figure 1  Time-lagged Recurrent Network

The box labeled “Neural Network” contains a neural net-
work with a feed-forward structure which will be referred
to as a “subnet” throughout the remainder of this paper. In
some applications two or more subnets are connected by
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tapped-delay lines  either directly as the output of one sub-
net forming the input to another subnet, or through a feed-
back loop which may direct output from one subnet back as
input to another subnet.  The presence of multiple feedback
loops connecting several subnets can create a complex
overall network structure.  In static networks containing no
feedback, standard backpropagation [3] may be used to
compute the gradients necessary for network training.  This
is not true for recurrent networks. The gradients of net-
works which have feedback loops must be computed using
dynamic backpropagation. Dynamic backpropagation takes
into account the time dependence of the network output on
previous outputs. The complexity of the dynamic deriva-
tives and the computational burden associated with com-
puting them increases with the addition of feedback loops
in a network structure.  This will be shown in the following
sections.
  
2.1 Dynamic Backpropagation
In training a neural network using supervised learning the
goal is usually to minimize a cost function , by adjusting
the network weights in an appropriate manner as to accom-
plish the minimization.  In the case of a recurrent network,
the cost function must reflect the dynamic nature of the
function represented by the network. It can be written more
descriptively as , where  is the network out-
put at time i, and  represents the network weights.    This
representation shows the time-dependent qualities of the
cost function.  In order to properly adjust the network
weights we must compute the derivative of  
with respect the network weights.  Because each subse-
quent output of a recurrent network is a function of the pre-
vious output, the derivative of the cost function with
respect to the weights must be performed through time.
This can be accomplished by applying the chain rule to the
cost function  with respect to  and .  This
application of the chain rule can be approached in two ways
which leads to,

(1)

and,

(2)

If the time dependence of the cost function derivative is
accounted for in calculating the derivative of the outputs
with respect to the networks weights we use Eq. (1).  If the
time dependence is accounted for in computing the deriva-
tive of the cost function with respect to the network outputs
we use Eq. (2).  The derivatives denoted with the super-
script e are explicit derivatives and can be computed using
standard backpropagation.  In Eq. (1) the implicit deriva-
tive of the network output with respect to the network
weights can computed as,

(3)

Eq. (1) and Eq. (3) are used together to comprise the for-
ward perturbation method [1] of computing dynamic deriv-
atives. In Eq. (2) the implicit derivative of the cost function
with respect to the network output can computed using,

(4)

Eq. (2) and Eq. (4) are used together to comprise the back-
propagation through time [1] method of computing
dynamic derivatives.   For the remainder of this paper we
will only consider the forward perturbation method for
computing dynamic derivatives.  

2.2 Simple Recurrent Network Example 
The simple recurrent network shown in Figure 2 will now
be used to illustrate the application of  Eq. (3) in computing
the dynamic derivatives of the network outputs with respect
to the network weights.  

Figure 2  Simple Recurrent Network

This example will help demonstrate the effect of tapped-
delay inputs in the formulation of the dynamic derivative
equations.  Eq. (3) can be rewritten as:

(5)

Expanding Eq. (5) we have:

(6)

The first term on the right-hand side of  Eq. (6) is the
explicit derivative of the network outputs with respect to
the weights. This term can be computed using standard
backpropagation.  The second term in Eq. (6) is the product
of the derivative of the inputs  with respect to the network
weights and the explicit derivative of the current output
with respect to the past outputs which are used as network
inputs.  Notice that all elements in the derivative matrix of
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Eq. (6) are stored values from previous recursions of the
dynamic derivative equation.  The number of taps in the
feedback loop directly affects the size of the derivative
matrix.  The size of this matrix in turn affects the storage
and computational requirements. The explicit derivatives of
the current output with respect to the past outputs can be
computed using a slight modification of the standard back-
propagation method.  Eq. (6) can be used to recursively
compute the implicit derivatives in Eq. (1).

2.3 Multiple Loops and Tapped-delay Inputs
In network structures containing multiple loops Eq. (1) and
Eq. (3) must be applied carefully to construct the equations
needed for computing the gradients used in training.  As
multiple loops are added to a network structure containing
two or more subnets, the dynamic derivative equations
often become nested or coupled in some other way.  Each
new loop typically produces an additional recursive
dynamic derivative equation, or at least adds a derivative
product contribution to an existing recursive equation.
These additional equations or product terms can add signif-
icantly to the computational burden associated with calcu-
lating network gradients.  Each feedback loop contains at
least one delay due to the discrete nature of neural net-
works.  Delays anywhere in a structure of connected sub-
nets necessitates the storage of delayed quantities, thereby
increasing the storage requirements associated with train-
ing.  Tapped delay lines placed within feedback loops or
between subnets  can substantially increase both the com-
putational burdens and storage requirements related to net-
work training.  This is evident in Eq. (6) from the simple
example of section 2.2.  To further illustrate the effect of
tapped-delay inputs, and to show the impact of multiple
loops on derivative calculations let us now consider some
additional examples.

2.4  Cascaded Recurrent Network Example 
A cascaded recurrent neural network structure is shown in
Figure 3.  In Figure 3 each of the subnets NN1, NN2 and
NN3 contain weights w1, w2 and w3 respectively.  For this
example we will develop only the dynamic gradient equa-
tions needed for updating the weights in NN1.  The number
of weights will be denoted N1.  Since we are using the for-
ward perturbation method we will start our development by
applying Eq. (3) to the NN3 subnet.  Doing this yields:

(7)

The explicit derivatives in Eq. (7) may be computed using
standard backpropagation.  In this example the explicit
derivative of the output  with respect to the NN1 weights
is zero because there is no direct backpropagation path
from the output to the weights, only tapped delay lines.
The derivative of the inputs  with respect to the weights

is an N1x2 matrix of past derivative values computed
using Eq. (7).  This matrix is updated after each recursion

of Eq. (7).  The derivative of the inputs  with respect to
the weights  is by coincidence also an N1x2 matrix.   

Figure 3  Cascaded Recurrent Neural Network Structure
 
However, the updates for this matrix are computed using
another dynamic derivative equation which is:

(8)

This derivative must be computed dynamically because of
the presence of the feedback loop around subnet NN2.  Eq.
(8) is used to update some of the elements of Eq. (7) at each
recursion.  The explicit derivatives in Eq. (8) may be com-
puted using standard backpropagation.  The derivative of
the inputs  with respect to the weights  is an N1x1
matrix of past derivative values computed using Eq. (8).
This matrix is updated after each recursion of Eq. (8).  The
derivative of the inputs  with respect to the weights  is
an N1x4 matrix.  The updates for this matrix are computed
using yet another dynamic derivative equation which is:

(9)

This derivative must be computed dynamically because of
the presence of the feedback loop around subnet NN1.  Eq.
(9) is used to update some of the elements of Eq. (8) at each
recursion.  Notice that Eq. (9) has one less term than Eq. (7)
and Eq. (8).  This is because the derivative of the inputs  
with respect to the NN1 weights  are zeros, so this term
is always zero in terms of  the nonrecurrent inputs. The
explicit derivatives in Eq. (9) may be computed using stan-
dard backpropagation.  The derivative of the inputs  with
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respect to the weights  is an N1x3 matrix of past deriva-
tive values computed using Eq. (9).  This matrix is updated
after each recursion of Eq. (9).   Similar equations for the
weights contained in subnets NN2 and NN3 can be devel-
oped.  This example shows us that for each cascaded recur-
rent network we add to the combined subnet structure we
need one more nested dynamic derivative equation. Again
it is important to note that the size of the non-explicit deriv-
ative matrices appearing in the dynamic backpropagation
equations is directly related to the number of tapped-delay
inputs used for each subnet.  

2.5 Nested Loop Recurrent Network Example 
A nested loop recurrent neural network structure is shown
in Figure 4. 

Figure 4  Nested Loop Recurrent Network 

In Figure 4 the subnets NN1, NN2 contain weights w1 and
w2, respectively.  For this example we will develop only the
dynamic gradient equations needed for updating the
weights in NN1.  The number of weights will be denoted
N1.  Since we are using the forward perturbation method
we will start our development by applying Eq. (3) to the
NN2 subnet.  Doing this yields:

(10)

The explicit derivatives in Eq. (10) may be computed using
standard backpropagation.  In this example the explicit
derivative of the output  with respect to the NN1 weights
is zero because there is no direct backpropagation path
from the output to the weights, only tapped delay lines.
The derivative of the inputs  with respect to the weights

is an N1x2 matrix of past derivative values computed
using Eq. (10).  This matrix is updated after each recursion
of Eq. (10).  The derivative of the inputs  with respect to
the weights  is an N1x4 matrix.  However, the updates
for this matrix are computed using another dynamic deriva-
tive equation which is:

(11)

This derivative includes dynamic terms from both the inner
loop around NN1, and the outer loop which goes around
subnets NN1, and NN2.  Notice that in this example the
presence of the outer feedback loop did not create the need
for another dynamic derivative equation as in the cascaded
recurrent example, but added a term to the last dynamic
derivative equation. Eq. (11) is used to update some of the
elements of Eq. (10) at each recursion.  The explicit deriva-
tives in Eq. (11) may be computed using standard back-
propagation.  The derivative of the inputs  with respect
to the weights  is an N1x3 matrix of past derivative val-
ues computed using Eq. (11).  This matrix is updated after
each recursion of Eq. (11).  The derivative of the inputs 
with respect to the weights is an N1x2 matrix.  The
updates for this matrix are computed using Eq. (10).  Simi-
lar equations for the weights contained in subnet NN2 can
be developed.  In this example the dynamic training equa-
tion are not nested, but instead they are coupled.  Each is
used to compute matrix updates for the other.  This cou-
pling occurs in network structures which contain nested
loops.  In examining this example and the cascaded recur-
rent network example in the previous section we can draw
some conclusions.  We can see that cascaded recurrent net-
works produce nested dynamic derivative equations, and
that nested feedback loops produce coupled dynamic deriv-
ative equations.  

3. Computational Considerations
The examples in the previous section illustrate how feed-
back loops, and even more importantly, how tapped-delay
input structures increase the computational burden and
storage requirements in training neural networks.  In this
section we will quantify the costs associated with dynamic
training equations and tapped-delay lines.  Consider the
simple subnetwork structure of  Figure 5.

Figure 5  Time-lagged Recurrent Subnet
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Z and Q will be defined as the number of taps in the feed-
forward and feedback input lines, respectively, for an indi-
vidual subnet.  We will assume that the output of the subnet
is eventually connected to the feedback in some manner
such that the feedback is affected by the subnet output.  We
will also assume that the feed-forward input to the subnet is
coming from at least one other subnet in which there are
weights which must be trained. The number of weights
which are to be adjusted in a preceding subnet will be
defined as N.  The generic dynamic gradient equation,
which must be used in backpropagating derivatives through
the single output structure shown in Figure 5, can be writ-
ten as:

(12)

If more inputs either from additional feedback loops, or
additional feed-forward paths are connected to a subnet,
then Eq. (12) will have additional matrix-vector product
terms like the ones associated with each of the two inputs in
Figure 5.  Now let’s examine the nature of the basic matrix-
vector product terms which appear in Eq. (12).  One of
these matrix-vector product terms is needed for each
tapped-delay line.  The number of multiplications and addi-
tions needed to compute one of these terms can be
expressed as:

(13)

(14)

Eq. (13) means that for every additional tap in any delay
line which is used as input to a subnet through which deriv-
atives are backpropagated, there will be additional required
multiplications equal to the number of weights to be
adjusted.  Eq. (14) indicates there be increased summing
operations required which equal the number of weights to
be adjusted.  If many taps are used, the increased burden of
computing the dynamic derivatives can be very substantial.
Returning now to Eq. (12), we can see that a matrix of
derivatives must be stored from one time step to the next.
Often the situation arises where elements of the same deriv-
ative matrix are used in computing dynamic derivatives for
two different subnets.  This means that only one derivative
matrix must be stored from one time step to the next.  This
can occur when a particular subnet output is used as both
feed-forward and feedback inputs.  This situation can also
occur if a subnet output is a feed-forward input to two dif-
ferent subnets, or as feedback input to two different sub-
nets.  In any of these cases the storage requirement will be
dependent on the longest tapped-delay line in which the
input is used.  The number of different derivative matrices
which must be saved is equal to the number of unique out-
puts within the structure of connected subnets which are
passed through tapped-delay lines.  The number of ele-
ments which must be saved can be expressed as:

       (15)

For real-time applications the computational burden associ-
ated with tapped-delay lines is of a bigger concern than the
issue of storage.  The preceding discussion highlights the
impact of computing full dynamic derivatives for recurrent
networks.  The increase in computational burden associated
with computing full dynamic derivatives makes it tempting
to use gradient approximations instead of true dynamic
derivatives in training neural networks.   One such approxi-
mation is to ignore the dynamic terms completely, using
only explicit derivatives in training.  If this technique is
used where tapped-delay lines are present between subnets,
then it may be necessary to approximate the explicit deriva-
tive from one subnet to the next using the most current path
in the tapped-delay line.  Another approach to approximat-
ing dynamic derivative terms is to use only the first
dynamic derivative term contribution in the derivative
matrix-vector product.  In other words only the contribution
from the first delay tap is considered in the dynamic deriva-
tive formulation.  In the next section we will examine the
result of using the various approximations.

4.  Simulation Results
In this section the results for a simulated neural network
controls problem will be presented.  The controller perfor-
mance when using true dynamic derivatives for the neuro-
controller training will be compared to performance when
using two derivative approximations.  The evaluation will
be based on squared error performance, and required float-
ing point operations.  Figure 6 is a schematic of the

Figure 6  Neural Network Control Simulation

simulated system.  This system is very similar to the model
reference adaptive control (MRAC) problem described in
[4].  The blocks marked TDL represent tapped-delay lines.
The plant model is used only as a backpropagation path for
the derivatives needed to adjust the controller weights.  The
plant model used was a fully recurrent 2-layer nonlinear
multi-layer perceptron network with 10 input taps, 50 feed-
back taps and 15 hidden neurons.  The weights in the plant
model are not adjusted during controller training.  The con-
troller weights are adjusted such that the error ec(i),
between a delayed reference input r(i), and the actual plant
output a(i), is minimized.   The controller structure con-
sisted of 40 input taps, 50 controller feedback taps,  75
plant output feedback taps and 15 hidden neurons.   The
reference input used in the simulation consisted of a ran-
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dom sequence of tone burst pulses as shown in  Figure 7.
The tone bursts are evenly spaced and appear randomly at
one of two frequencies.  Periodic disturbance noise was
added to the plant input.  The open-loop plant response
with no controller is shown in   Figure 8.  The simulation
was first run using full dynamic backpropagation during
controller training.   The plant response after controller
convergence is shown in Figure 9.  In the next part of the
simulation dynamic backpropagation was used in the plant
model, but was not used in backpropagating derivatives in
the controller.  The results are shown in Figure 10.

Figure 7  Tone Burst Controller Input

Figure 8  Open-loop Plant Response

Figure 9  Response with Full Dynamic Training
  

Figure 10  Response without Dynamic Controller Training

For the last part of the simulation, dynamic backpropaga-
tion was only used to compute a dynamic derivative across
the first delay in the tapped-delay line between the plant

model and the controller.  All other derivatives were com-
puted using only explicit derivatives.  It was impossible to
get the controller weights to converge, so a plot of the
results is not shown.  Table 1. provides a summary of the
performance results for the simulations.  These results
highlight how much more computational burden there is
when calculating dynamic derivatives than when using
static backpropagation alone. In this example reasonable
performance was possible even when dynamic derivatives
were used only in the plant model.  This derivative approx-
imation decreased the computational burden by approxi-
mately 65%.  Using essentially no dynamic derivatives in
training reduced the computational burden by  approxi-
mately 98%.  However, performance in this case was unac-
ceptable.

5. Conclusions
In this paper we described time-lagged recurrent networks
and dynamic backpropagation. More specifically, we
examined the impact of the presence of multiple feedback
loops and tapped-delay lines on the equations used to com-
pute the dynamic derivatives needed for network training.
Several examples were presented and the derivative equa-
tions developed for each. The effects of feedback loops and
tapped-delay lines on computational burden and storage
requirements were discussed.  Simulation results for a non-
linear adaptive controls problem were presented.  The
effects on computational burden and squared-error perfor-
mance when using two derivative approximations have
been compared to results obtained when using full dynamic
backpropagation.  
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Derivative 
Method

Flops/Sample
Sum Squared 

Error

Full Dynamic 9.83 x 105 43.44

Plant Only 
Dynamic 3.48 x 105 55.53

No Dynamic 1.85 x 104 127.88

                          Table 1.  Simulation Results


