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Abstract
In this paper we describe an on-line method of training
neural networks which is based on solving the linearized
least-squares problem using the pseudo-inverse for the
underdetermined case.  This Underdetermined Linearized
Least Squares (ULLS) method requires significantly less
computation and memory for implementation than stan-
dard higher-order methods such as the Gauss-Newton
method or extended Kalman filter.  This decrease is possi-
ble because the method allows training to proceed with a
smaller number of samples than parameters.  Simulation
results which compare the performance of the ULLS algo-
rithm to the recursive linearized least squares algorithm
(RLLS) and the gradient descent algorithm are presented.
Results showing the impact on computational complexity
and squared-error performance of the ULLS method when
the number of terms in the Jacobian matrix is varied are
presented as well.  

1. Introduction
First-order, stochastic gradient decent methods can be used
in training neural networks adaptively, but they often
exhibit poor performance when used with complex (i.e.
nonlinear, recurrent) network structures.  Standard higher-
order optimization methods, such as the Gauss-Newton
method or the extended Kalman filter, are used to solve the
linearized least-squares problem using the pseudo-inverse
for the overdetermined case.  These methods generally per-
form much better than gradient descent methods, but
involve numerical operations on square matrices which are
proportional in size to the number of parameters in the net-
work.  In a typical filtering or control problem the tapped-
delay line is used as the network input.  If a fully connected
neural network is used, the tapped-delay can easily contain
enough taps to necessitate having a very large number of
weights.  The computational burden and memory require-
ments associated with training such a network can be pro-
hibitive when implementing one of the standard higher-
order optimization methods in a real-time system.  Our first
goal in this paper is to present an efficient ULLS method of
training complex neural networks that is suitable for real-
time implementation.  Our second goal is to show a perfor-
mance comparison between the ULS method and two other
popular training methods.  In the first section we give a
summary of the linear least squares method for the overde-

termined case and the underdetermined case.  This develop-
ment is then extended to the overdetermined and
underdetermined cases for linearized least squares parame-
ter estimation for nonlinear functions.  In the next section
we describe how to apply the ULLS algorithm to nonlinear
neural networks. In the simulation section we apply the
ULLS algorithm to a three-layer nonlinear network exam-
ple.  The same network is also trained using the recursive
implementation of the overdetermined linearized least
squares method and gradient descent method.  The perfor-
mance of all three training methods are then compared.
The effect of varying the size of the Jacobian matrix is
examined as well.  The last section of the paper presents
conclusions.

2. Linear Least Squares
One common method of estimating the unknown parame-
ters of linear functions is the method of  linear least squares
[1].  In this method the function to be minimized is the
familiar sum-of-squared-errors function given as:

(1)

where:                 (2)
In Eq. (1) the vector  represents the difference
between a vector of desired outputs , and vector of outputs

, produced by a function of the form,

(3)

where  is a vector of parameter estimates.
 are multiplying entities which are

simply scalar inputs at a specific index , but can be  non-
linear functions involving many system inputs.  These
functions cannot involve any of the parameters in  .  A
radial basis function neural networks [2] is a common
example of a function which fits this description.   If we
substitute Eq. (3) for all index values  into Eq.
(2), and use Eq. (1) the following equation results:

(4)
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In Eq. (4)  is defined as:

  (5)

If an ideal a set of parameters exists, then, 

(6)
and  represents a perfect solution to Eq. (6).

2.1 Overdetermined Linear Least Squares Solution
If there are more measurements available then there are
unknown parameters for a system to be modeled, then the
parameter estimation problem is said to be overdetermined.
In this case we wish to minimize Eq. (4) by our choice of
parameters.  Eq. (4) can be rewritten as:

(7)
Taking the gradient of Eq. (7) with respect to  yields:

(8)

To find the parameters which minimize Eq. (7), we set the
equal to zero and solve for .  The result is the formula
below for computing the least squares estimate of the
unknown parameters of a linear function in the overdeter-
mined case.

  (9)
Notice that the matrix product appearing inside the inver-
sion in Eq. (9) is of size M x M where M is number of
parameters.  The addition of  a  weighting matrix to Eq. (9)
renders the weighted least squares [3] method, which can
be described by:

(10)
 is a diagonal matrix which causes the last measurements

to be weighted more heavily than the preceding measure-
ments.  The weighting matrix is of the form,

 (11)

where  is a “forgetting” factor which is a positive number
less than 1.  The matrix inversion lemma [3] can be used to
develop the familiar recursive least squares (RLS) method
of computing the result of Eq. (10) recursively.  This devel-
opment will not be presented here but is the basis for the
recursive Gauss-Newton method which will be used for
comparison to the method of this paper.  The RLS method
is very useful in estimating unknown parameters in func-
tions whose outputs are linearly related to the unknown
parameters.  This constraint renders this method of limited
use in training neural networks, which often produce out-
puts which are not linearly related to the unknown network

weights which are adjusted during training.  In a later sec-
tion the method of linearized least squares for use with non-
linear functions will be discussed.
2.1 Underdetermined Linear Least Squares Solution
If there are fewer measurements available then there are
unknown parameters for a system to be modeled, then the
parameter estimation problem is said to be underdeter-
mined.  When we have this situation, Eq. (9) cannot be
used.  The underconstrained nature of this problem dictates
that a single unique solution does not exist.  To remedy this
we must constrain the problem sufficiently as to force a
unique solution.  A straight-forward way of accomplishing
this is to minimize the sum of the squared parameters,
while enforcing the following constraint:  

(12)
In other words we want to perform the minimization with
respect to , and , where  is the vector of parameters
and  is a vector of Lagrange multipliers [4]. 

(13)

Eq. (13) can be rewritten as:

(14)

Taking the gradient of Eq. (14) with respect to  and ,
respectively,  and setting the result equal to zero yields:

(15)

and,

(16)

Solving Eq. (15) for  we get,

(17)
but from Eq. (16) we know that:

(18)
Substituting Eq. (18) into Eq. (17) yields:

(19)

Eq. (19) can now be plugged into Eq. (15) and the result
can be solved for  to show that:

(20)

Eq. (20) is the solution to the underdetermined linear least
squares problem.  Notice that the matrix product which
appears inside the inversion of Eq. (20) is an M x M matrix
where M is the number of sample contributions to the  
matrix.  The outer product form of Eq. (20) does not lend
itself to the insertion of a traditional exponential weighting
matrix or to the application of  the matrix inversion lemma.
However if a small window of sample contributions are
used in forming the  matrix, the size of the resulting
matrix to be inverted in Eq. (20) is small.  This opens the
possibility of computing parameter updates in “real-time”
with fewer computations than with the RLS algorithm.
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3.0 Linearized Least-Squares
The least-squares method may be used in minimizing non-
linear functions by first linearizing the function about a
nominal set of parameter values, then applying the standard
least-squares equations to calculate an incremental parame-
ter adjustment.  This process is repeated until a specified
convergence criteria has been satisfied.  This modification
of the least-squares method is known as the linearized
least-squares method or the iterated least-squares method
[5].  This modification of the linear least-squares method
was developed to overcome the constraint of linearity
between a function output and the unknown parameters in
the function which is to be minimized.  This method can be
applied to overdetermined and underdetermined problems.

3.1 Overdetermined Linearized Least Squares Solution
A development of the iterated least-squares method begins
with the familiar equation,

(21)

where:                 (22)
which has been explained in the preceding sections.  Now
suppose that  is a vector of outputs of a nonlinear
function of  known inputs and unknown function parame-
ters  which must be determined, and  is a vector of
desired outputs corresponding to the known inputs to the
function.  Now we must linearize .  The incremental
change in the vector of function outputs for an incremental
adjustment in the function parameters is represented by Eq.
(23).  

(23)

In Eq. (23)  is the vector of incremental adjustments of
the estimated parameters.  Taking the first-order Taylor
series expansion of Eq. (23) produces  Eq. (24).

(24)

where:

(25)

In Eq. (25)  M is the number of unknown parameters, N is
the number of input/target-output data pairs, and n is the
index which corresponds to the iteration of the data set pre-
sentation.  Using Eq. (24), Eq. (21) can be written as:

(26)
Rewriting Eq. (26) in terms of the function output error we
have:

(27)

Rearranging Eq. (27) we have:

(28)

Taking the vector derivative of Eq. (28) with respect to
 yields:

(29)

To find the changes in the parameters which minimize Eq.
(28), we set the vector derivative given by Eq. (29) equal to
zeros and solve for .  The result is Eq. (30) for comput-
ing the least-squares estimate of the incremental parameter
adjustment needed to minimize the function.  The function
has been linearized about the current parameter values.  

(30)

In essence, the linear least-squares solution to the linearized
system is computed about the current set of parameter esti-
mates to find the appropriate vector of parameter adjust-
ments which are then used in Eq. (31) to compute an
updated vector of parameter estimates. 

(31)

Eq. (30) can be inserted into Eq. (31) to obtain:

(32)

The same result can be derived using the Gauss-Newton
approach [6].  Upon close examination of the Gauss-New-
ton and iterated least-squares methods it can be seen that
the two methods are in fact equivalent.  A recursive method
of  implementing Eq. (32) can be developed in much the
same way as the RLS algorithm.  The recursive linearized
least squares method will be referred to as the RLLS
method henceforth.

3.1 Underdetermined Linearized Least Squares Solution
A linearized least squares solution can be obtained for
underdetermined nonlinear optimization problems. A
development similar to that given in section 2.2 can be used
with the perturbation equations introduced in section 3.1 to
develop a linearized least squares solution for the underde-
termined case.  This derivation will not be shown here, but
the results can be summarized  as: 

 (33)

(34)

(35)

As with the underdetermined linear least squares method
the size of the matrix which must be inverted in Eq. (35) is
dependent not on the number parameters, but on the num-
ber of measurements being considered.  This method will
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be applied in the next section to the training of nonlinear
multi-layer neural networks.

3. Incremental ULLS Network Training
In this section a method of using the underdetermined lin-
earized least squares (ULLS) approach to incrementally
train nonlinear neural networks will be presented.  The
method relies on applying Eq. (35), where the parameters

 are the network weights w , and gradient matrix 
is a windowed Jacobian matrix [6] J  for the network.  The
equation for a single update of the network weights can be
written as:

(36)

In Eq. (36),  is a small positive number less than one,
which serves as a weight adjustment step size or damping
factor.  The Jacobian matrix used in Eq. (36) is updated at
each index in time to reflect a window of past measure-
ments.  This update can be described by Eq. (37) below
where  is the most recently computed row in the Jacobian
matrix.   

(37)

The oldest row of the previous Jacobian matrix is removed
in Eq. (37).  This windowing effect causes the algorithm to
“forget” the effects of older measurements, making the
method suitable for adaptive network training.  As stated
previously, the required matrix inversion in Eq. (36) is of
order M, which is the number of measurements considered
in the current Jacobian matrix.  This is of particular impor-
tance in training neural networks.  A fully-connected neural
network can easily contain a large number of weights.  This
is especially true in applications in which tapped-delay
inputs are used.  A large number of weights can be required
to accommodate the inputs from even a modest length
tapped-delay line.  Unfortunately, tapped-delay lines are
commonly used in real-time operations where conventional
recursive linearized least squares training of networks con-
taining a large number of weights is impractical because of
computational requirements.  These methods do not require
direct inversion of large matrices, but do require multiplica-
tion and addition operations on matrices which are of order
M, the number of network parameters.  The ULLS method
of training networks requires a direct matrix inversion of
order N, the number of measurements to be considered in
the Jacobian matrix window.  As we will see in the follow-
ing section, the number of measurements considered for
each weight update does have an impact on the algorithm
performance as well as computational requirements.

4. Simulation Results
In this section simulation results for training a typical neu-
ral network using three different training methods will be
compared.  There will also be results presented which show
the impact on performance when various numbers of past
measurements are considered when training using the
ULLS method.  The three methods which will be compared
are gradient descent, recursive linearized least squares and
the ULLS method.  The performance of the methods will
be evaluated and compared based on speed of convergence,
squared-error performance after convergence, and compu-
tational requirements.  The network used in the comparison
was a three-layer nonlinear network with 20 inputs, 10 log-
sigmoid neurons in the first hidden layer, 3 log-sigmoid
neurons in second hidden layer, and a single linear output
neuron.  The network was fully connected and had a total
of 247 weights including biases.  Training data was
obtained by fixing the network weights at random values
and running a forward simulation using a tapped delay
structure of random inputs.  This data was then used in
training simulations.  For each training simulation  the net-
work weights were initialized to the same set of small ran-
dom numbers.  The performance of the fixed learning rate
gradient descent method was optimized by running simula-
tions with many different learning rates.  The comparisons
of the methods which follow are based on the gradient
descent results when using the optimum learning rate.  The
implementation of the ULLS method used a Jacobian
matrix based on a window of 10 past measurements.  All
simulation results shown here reflect this implementation
unless otherwise noted.  Figure 1 shows the mean squared
error for a 200 point window computed at each index in the
3000 training points.  

Figure 1  Mean-Squared Error Performance

We can see from Figure 1 that the gradient descent method
converges more slowly and finds a poorer solution than
either the RLLS method or the  ULLS method.  It can also
be seen the RLLS method converges with a lower mean-
squared error than the ULLS method.  However it is very
significant that the ULLS method converges much more
quickly than the RLLS method.  This is of great importance
in adaptive systems where the model is constantly chang-
ing.  The superior squared-error performance of the RLLS
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and ULLS methods is paid for in computational complexity
as indicated in Table 1.     

These results indicate that with the methods considered
there is improved ultimate squared-error performance as
the computational complexity increases.  Most signifi-
cantly, we can see that the ULLS method exhibits the fast-
est convergence performance on a sample by sample basis.
Figure 2 is plot of squared-error vs. floating point opera-
tions.   

Figure 2  Squared-Error vs. Flops

This plot shows that the gradient descent method exhibits
the fastest convergence on a floating point operations basis.
Notice that the ULLS algorithm can drive the mean squared
error much lower than the minimum error achieved by the
steepest descent algorithm with less than an order of mag-
nitude increase in required floating point operations. 

The next set of simulation results reflects the effect of
changing the size of the window of measurements consid-
ered in the ULLS algorithm.  The network structure and
data set used for this simulation were the same as for the
previous simulations.  The size of the Jacobian matrix was
varied from run to run.  Figure 3 shows the squared-error
performance when considering different Jacobian matrix
sizes.  In this example there was little improvement in the
squared-error performance when more than about 10 mea-
surements were used in the Jacobian matrix window.
Table 2 contains a summary of the ULLS algorithm perfor-
mance for these simulations.  There is a tremendous
increase in computational burden each time the number of
terms in the Jacobian is doubled.  If only two terms are
used there is a dramatic increase in performance for only a
four-fold increase in computational burden.  This might be

an attractive improvement for systems with limited compu-
tational capacity which currently use gradient descent train-
ing. 

Figure 3  Effect of Jacobian Size in ULLS Performance

5. Conclusions
A method for training neural networks on-line, using the
solution to the underdetermined linearized least-squares
problem, has been  presented.  Our work shows that, for
training feed-forward multi-layer neural networks on a
sample-by-sample basis, the ULLS method we have pre-
sented here exhibits faster convergence than two of the
standard real-time training methods.  The ULS method also
exhibits good final convergence performance, although not
as good as the recursive linearized least squares (RLLS)
method.  Additionally, we have shown that the ULLS
method requires far fewer computations per input sample
than the RLLS method.  Because we have employed the
solution of the underdetermined least-squares problem in
our method, it is possible to consider fewer input samples
than network parameters in calculating weight updates.
This dramatically reduces the computational burden and
memory requirements over second-order on-line training
methods.  
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