

Objectives

2-1

2

2

Neuron Model and Network
Architectures

Objectives 2-1

Theory and Examples 2-2

Notation 2-2

Neuron Model 2-2

Single-Input Neuron 2-2

Transfer Functions 2-3

Multiple-Input Neuron 2-7

Network Architectures 2-9

A Layer of Neurons 2-9

Multiple Layers of Neurons 2-10

Recurrent Networks 2-13

Summary of Results 2-16

Solved Problems 2-20

Epilogue 2-22

Exercises 2-23

Objectives

In Chapter 1 we presented a simplified description of biological neurons
and neural networks. Now we will introduce our simplified mathematical
model of the neuron and will explain how these artificial neurons can be in-
terconnected to form a variety of network architectures. We will also illus-
trate the basic operation of these networks through some simple examples.
The concepts and notation introduced in this chapter will be used through-
out this book.

This chapter does not cover all of the architectures that will be used in this
book, but it does present the basic building blocks. More complex architec-
tures will be introduced and discussed as they are needed in later chapters.
Even so, a lot of detail is presented here. Please note that it is not necessary
for the reader to memorize all of the material in this chapter on a first read-
ing. Instead, treat it as a sample to get you started and a resource to which
you can return.

2

 Neuron Model and Network Architectures

2-2

Theory and Examples

Notation

Neural networks are so new that standard mathematical notation and ar-
chitectural representations for them have not yet been firmly established.
In addition, papers and books on neural networks have come from many di-
verse fields, including engineering, physics, psychology and mathematics,
and many authors tend to use vocabulary peculiar to their specialty. As a
result, many books and papers in this field are difficult to read, and con-
cepts are made to seem more complex than they actually are. This is a
shame, as it has prevented the spread of important new ideas. It has also
led to more than one Òreinvention of the wheel.Ó

In this book we have tried to use standard notation where possible, to be
clear and to keep matters simple without sacrificing rigor. In particular, we
have tried to define practical conventions and use them consistently.

Figures, mathematical equations and text discussing both figures and
mathematical equations will use the following notation:

Scalars Ñ small

italic

 letters:

a,b,c

Vectors Ñ small

bold

 nonitalic letters:

a,b,c

Matrices Ñ capital

BOLD

nonitalic letters:

A,B,C

Additional notation concerning the network architectures will be intro-
duced as you read this chapter. A complete list of the notation that we use
throughout the book is given in Appendix B, so you can look there if you
have a question.

Neuron Model

Single-Input Neuron

A single-input neuron is shown in Figure 2.1. The scalar input is multi-
plied by the scalar

weight

 to form , one of the terms that is sent to the
summer. The other input, , is multiplied by a

bias

 and then passed to
the summer. The summer output , often referred to as the

net input

, goes
into a

transfer function

 , which produces the scalar neuron output .
(Some authors use the term Òactivation functionÓ rather than

transfer func-
tion

 and ÒoffsetÓ rather than

bias

.)

If we relate this simple model back to the biological neuron that we dis-
cussed in Chapter 1, the weight corresponds to the strength of a synapse,

p
Weight w wp

1Bias b
nNet Input

Transfer Function f a

w

Neuron Model

2-3

2

the cell body is represented by the summation and the transfer function,
and the neuron output represents the signal on the axon.

Figure 2.1 Single-Input Neuron

The neuron output is calculated as

.

If, for instance, , and , then

The actual output depends on the particular transfer function that is cho-
sen. We will discuss transfer functions in the next section.

The bias is much like a weight, except that it has a constant input of 1.
However, if you do not want to have a bias in a particular neuron, it can be
omitted. We will see examples of this in Chapters 3, 7 and 14.

Note that

and are both

adjustable

 scalar parameters of the neuron.
Typically the transfer function is chosen by the designer and then the pa-
rameters and will be adjusted by some learning rule so that the neu-
ron input/output relationship meets some specific goal (see Chapter 4 for
an introduction to learning rules). As described in the following section, we
have different transfer functions for different purposes.

Transfer Functions

The transfer function in Figure 2.1 may be a linear or a nonlinear function
of . A particular transfer function is chosen to satisfy some specification
of the problem that the neuron is attempting to solve.

A variety of transfer functions have been included in this book. Three of the
most commonly used functions are discussed below.

The

hard limit transfer function

, shown on the left side of Figure 2.2, sets
the output of the neuron to 0 if the function argument is less than 0, or 1 if

a

a = f (wp + b)

General Neuron

an

Inputs

AA
b

p w

1

AAΣ f

a f wp b+()=

w 3= p 2= b 1.5–=

a f 3 2() 1.5–() f 4.5()==

w b

w b

n

Hard Limit
Transfer Function

2

 Neuron Model and Network Architectures

2-4

its argument is greater than or equal to 0. We will use this function to cre-
ate neurons that classify inputs into two distinct categories. It will be used
extensively in Chapter 4.

Figure 2.2 Hard Limit Transfer Function

The graph on the right side of Figure 2.2 illustrates the input/output char-
acteristic of a single-input neuron that uses a hard limit transfer function.
Here we can see the effect of the weight and the bias. Note that an icon for
the hard limit transfer function is shown between the two figures. Such
icons will replace the general in network diagrams to show the particular
transfer function that is being used.

The output of a

linear transfer function

 is equal to its input:

, (2.1)

as illustrated in Figure 2.3.

Neurons with this transfer function are used in the ADALINE networks,
which are discussed in Chapter 10.

Figure 2.3 Linear Transfer Function

The output () versus input () characteristic of a single-input linear neu-
ron with a bias is shown on the right of Figure 2.3.

AA
AA

a = hardlim (wp + b)a = hardlim (n)

Single-Input hardlim NeuronHard Limit Transfer Function

-b/w
p

-1

n
0

+1

a

-1

0

+1

a

f

Transfer Function
Linear

a n=

n
0

-1

+1

-b/w
p

0

+b

AA

a = purelin (n)

Linear Transfer Function Single-Input purelin Neuron

a = purelin (wp + b)

aa

a p

Neuron Model

2-5

2

The

log-sigmoid transfer function

 is shown in Figure 2.4.

Figure 2.4 Log-Sigmoid Transfer Function

This transfer function takes the input (which may have any value between
plus and minus infinity) and squashes the output into the range 0 to 1, ac-
cording to the expression:

. (2.2)

The log-sigmoid transfer function is commonly used in multilayer networks
that are trained using the backpropagation algorithm, in part because this
function is differentiable (see Chapter 11).

Most of the transfer functions used in this book are summarized in Table
2.1. Of course, you can define other transfer functions in addition to those
shown in Table 2.1 if you wish.

To experiment with a single-input neuron, use the Neural Network Design
Demonstration

One-Input Neuron

nnd2n1.

Transfer Function

-1 -1

n
0

+1

-b/w
p

0

+1

AA
AA

a = logsig (n)

Log-Sigmoid Transfer Function

a = logsig (wp + b)

Single-Input logsig Neuron

a a

a
1

1 e n–+
----------------=

Log-Sigmoid

2

 Neuron Model and Network Architectures

2-6

Name Input/Output Relation Icon

MATLAB

Function

Hard Limit hardlim

Symmetrical Hard Limit hardlims

Linear purelin

Saturating Linear satlin

Symmetric Saturating
Linear

satlins

Log-Sigmoid logsig

Hyperbolic Tangent
Sigmoid

tansig

Positive Linear poslin

Competitive compet

Table 2.1 Transfer Functions

a 0 n 0<=

a 1 n 0≥=

AA
AA

a 1 n 0<–=

a +1 n 0≥=

AA
AA

a n=

AA
AA

a 0 n 0<=

a n 0 n 1≤ ≤=

a 1 n 1>= AA
AA

a 1 n 1–<–=

a n 1– n 1≤ ≤=

a 1 n 1>= AA
AA

a
1

1 e n–+
----------------=

AA
AA

a
en e n––

en e n–+
------------------=

AA
AA

a 0 n 0<=

a n 0 n≤=

AA
AA

a 1 neuron with max n=

a 0 all other neurons= AA
AA

C

Neuron Model

2-7

2

Multiple-Input Neuron
Typically, a neuron has more than one input. A neuron with inputs is
shown in Figure 2.5. The individual inputs are each weighted
by corresponding elements of the weight matrix .

Figure 2.5 Multiple-Input Neuron

The neuron has a bias , which is summed with the weighted inputs to
form the net input :

. (2.3)

This expression can be written in matrix form:

, (2.4)

where the matrix for the single neuron case has only one row.

Now the neuron output can be written as

. (2.5)

Fortunately, neural networks can often be described with matrices. This
kind of matrix expression will be used throughout the book. DonÕt be con-
cerned if you are rusty with matrix and vector operations. We will review
these topics in Chapters 5 and 6, and we will provide many examples and
solved problems that will spell out the procedures.

We have adopted a particular convention in assigning the indices of the el-
ements of the weight matrix. The first index indicates the particular neu-
ron destination for that weight. The second index indicates the source of
the signal fed to the neuron. Thus, the indices in say that this weight
represents the connection to the first (and only) neuron from the second
source. Of course, this convention is more useful if there is more than one
neuron, as will be the case later in this chapter.

R
p1 p2 ... pR,,,

w1 1, w1 2, ... w1 R,,,,Weight Matrix W

Multiple-Input Neuron

p1

an

Inputs

b

p2
p3

pR
w1, R

w1, 1

1

AA
AAΣ

a = f (Wp + b)

AA
AAf

b
n

n w1 1, p1 w1 2, p2
... w1 R, pR b+ + + +=

n Wp b+=

W

a f Wp b+()=

Weight Indices
w1 2,

2 Neuron Model and Network Architectures

2-8

We would like to draw networks with several neurons, each having several
inputs. Further, we would like to have more than one layer of neurons. You
can imagine how complex such a network might appear if all the lines were
drawn. It would take a lot of ink, could hardly be read, and the mass of de-
tail might obscure the main features. Thus, we will use an abbreviated no-
tation. A multiple-input neuron using this notation is shown in Figure 2.6.

Figure 2.6 Neuron with Inputs, Abbreviated Notation

As shown in Figure 2.6, the input vector is represented by the solid ver-
tical bar at the left. The dimensions of are displayed below the variable
as , indicating that the input is a single vector of elements. These
inputs go to the weight matrix , which has columns but only one row
in this single neuron case. A constant 1 enters the neuron as an input and
is multiplied by a scalar bias . The net input to the transfer function is

, which is the sum of the bias and the product . The neuronÕs output
 is a scalar in this case. If we had more than one neuron, the network out-

put would be a vector.

The dimensions of the variables in these abbreviated notation figures will
always be included, so that you can tell immediately if we are talking about
a scalar, a vector or a matrix. You will not have to guess the kind of variable
or its dimensions.

Note that the number of inputs to a network is set by the external specifi-
cations of the problem. If, for instance, you want to design a neural network
that is to predict kite-flying conditions and the inputs are air temperature,
wind velocity and humidity, then there would be three inputs to the net-
work.

To experiment with a two-input neuron, use the Neural Network Design
Demonstration Two-Input Neuron (nnd2n2).

Abbreviated Notation

AA
AA
AA

f

Multiple-Input Neuron

a = f (Wp + b)

p a

1

nAW

A
Ab

R x 1
1 x R

1 x 1

1 x 1

1 x 1

Input

R 1

R

p
p

R 1× R
W R

b f
n b Wp
a

Network Architectures

2-9

2

Network Architectures
Commonly one neuron, even with many inputs, may not be sufficient. We
might need five or ten, operating in parallel, in what we will call a Òlayer.Ó
This concept of a layer is discussed below.

A Layer of Neurons
A single-layer network of neurons is shown in Figure 2.7. Note that each
of the inputs is connected to each of the neurons and that the weight ma-
trix now has rows.

Figure 2.7 Layer of S Neurons

The layer includes the weight matrix, the summers, the bias vector , the
transfer function boxes and the output vector . Some authors refer to the
inputs as another layer, but we will not do that here.

Each element of the input vector is connected to each neuron through the
weight matrix . Each neuron has a bias , a summer, a transfer func-
tion and an output . Taken together, the outputs form the output vector

.

It is common for the number of inputs to a layer to be different from the
number of neurons (i.e.,).

You might ask if all the neurons in a layer must have the same transfer
function. The answer is no; you can define a single (composite) layer of neu-
rons having different transfer functions by combining two of the networks

Layer S
R

S

Layer of S Neurons

AAf

p1

a2n2

Inputs

p2

p3

pR

wS, R

w1,1

b2

b1

bS

aSnS

a1n1

1

1

1

AA
AAΣ

AA
AA

Σ

AAΣ

AA
AA

f

AA
AA

f

a = f(Wp + b)

b
a

p
W bi

f ai
a

R S≠

2 Neuron Model and Network Architectures

2-10

shown above in parallel. Both networks would have the same inputs, and
each network would create some of the outputs.

The input vector elements enter the network through the weight matrix
:

. (2.6)

As noted previously, the row indices of the elements of matrix indicate
the destination neuron associated with that weight, while the column indi-
ces indicate the source of the input for that weight. Thus, the indices in

 say that this weight represents the connection to the third neuron
from the second source.

Fortunately, the S-neuron, R-input, one-layer network also can be drawn in
abbreviated notation, as shown in Figure 2.8.

Figure 2.8 Layer of Neurons, Abbreviated Notation

Here again, the symbols below the variables tell you that for this layer,
is a vector of length , is an matrix, and and are vectors of
length . As defined previously, the layer includes the weight matrix, the
summation and multiplication operations, the bias vector , the transfer
function boxes and the output vector.

Multiple Layers of Neurons
Now consider a network with several layers. Each layer has its own weight
matrix , its own bias vector , a net input vector and an output vector

. We need to introduce some additional notation to distinguish between
these layers. We will use superscripts to identify the layers. Specifically, we

W

W

w1 1, w1 2, … w1 R,

w2 1, w2 2, … w2 R,

wS 1, wS 2, … wS R,

=

… … …

W

w3 2,

AA
AA
AA

f

Layer of S Neurons

a = f(Wp + b)

p a

1

nAAW

AA
AA

b

R x 1
S x R

S x 1

S x 1

S x 1

Input

R S

S

p
R W S R× a b

S
b

W b n
a

Network Architectures

2-11

2

append the number of the layer as a superscript to the names for each of
these variables. Thus, the weight matrix for the first layer is written as ,
and the weight matrix for the second layer is written as . This notation
is used in the three-layer network shown in Figure 2.9.

Figure 2.9 Three-Layer Network

As shown, there are inputs, neurons in the first layer, neurons in
the second layer, etc. As noted, different layers can have different numbers
of neurons.

The outputs of layers one and two are the inputs for layers two and three.
Thus layer 2 can be viewed as a one-layer network with = inputs,

 neurons, and an weight matrix . The input to layer 2 is
, and the output is .

A layer whose output is the network output is called an output layer. The
other layers are called hidden layers. The network shown above has an out-
put layer (layer 3) and two hidden layers (layers 1 and 2).

The same three-layer network discussed previously also can be drawn us-
ing our abbreviated notation, as shown in Figure 2.10.

W1

W2

First Layer

a1 = f 1 (W1p + b1) a2 = f 2 (W2a1 + b2) a3 = f 3 (W3a2 + b3)

AA
AA

f 1

AAf 2

A
A

f 3

Inputs

a3
2n3

2

w 3
S

3
, S

2

w 3
1,1

b3
2

b3
1

b3
S

3

a3
S

3n3
S

3

a3
1n3

1

1

1

1

1

1

1

1

1

1

p1

a1
2n1

2
p2

p3

pR

w 1
S

1
, R

w 1
1,1

a1
S

1n1
S

1

a1
1n1

1

a2
2n2

2

w 2
S

2
, S

1

w 2
1,1

b1
2

b1
1

b1
S

1

b2
2

b2
1

b2
S

2

a2
S

2n2
S

2

a2
1n2

1

AA
AAΣ

AA
AA

Σ

AAΣ

AA
AAΣ

AA
AA

Σ

AAΣ

AA
AAΣ

AA
AA
Σ

AAΣ

AA
AA

f 1

AAf 1

AAf 2

AA
AA

f 2

A
A

f 3

Af 3

a3 = f 3 (W3f 2 (W2f 1 (W1p + b1) + b2) + b3)

Third LayerSecond Layer

R S1 S2

R S1

S S2= S1 S2× W2

a1 a2

Output Layer
Hidden Layers

Layer Superscript

2 Neuron Model and Network Architectures

2-12

Figure 2.10 Three-Layer Network, Abbreviated Notation

Multilayer networks are more powerful than single-layer networks. For in-
stance, a two-layer network having a sigmoid first layer and a linear sec-
ond layer can be trained to approximate most functions arbitrarily well.
Single-layer networks cannot do this.

At this point the number of choices to be made in specifying a network may
look overwhelming, so let us consider this topic. The problem is not as bad
as it looks. First, recall that the number of inputs to the network and the
number of outputs from the network are defined by external problem spec-
ifications. So if there are four external variables to be used as inputs, there
are four inputs to the network. Similarly, if there are to be seven outputs
from the network, there must be seven neurons in the output layer. Finally,
the desired characteristics of the output signal also help to select the trans-
fer function for the output layer. If an output is to be either or , then
a symmetrical hard limit transfer function should be used. Thus, the archi-
tecture of a single-layer network is almost completely determined by prob-
lem specifications, including the specific number of inputs and outputs and
the particular output signal characteristic.

Now, what if we have more than two layers? Here the external problem
does not tell you directly the number of neurons required in the hidden lay-
ers. In fact, there are few problems for which one can predict the optimal
number of neurons needed in a hidden layer. This problem is an active area
of research. We will develop some feeling on this matter as we proceed to
Chapter 11, Backpropagation.

As for the number of layers, most practical neural networks have just two
or three layers. Four or more layers are used rarely.

We should say something about the use of biases. One can choose neurons
with or without biases. The bias gives the network an extra variable, and
so you might expect that networks with biases would be more powerful

First Layer

AA
AA
AA

f 1

AA
AA
AA

f 2

AA
AA
AA

f 3

p a1 a2

AAW1

AA
AA

b1

AAW2

AA
AA

b21 1

n1 n2

a3

n3

1

AAW3

AA
AA

b3

S2 x S1

S2 x 1

S2 x 1

S2 x 1
S3 x S2

S3 x 1

S3 x 1

S3 x 1R x 1
S1 x R

S1 x 1

S1 x 1

S1 x 1

Input

R S1 S2 S3

Second Layer Third Layer

a1 = f 1 (W1p + b1) a2 = f 2 (W2a1 + b2) a3 = f 3 (W3a2 + b3)

a3 = f 3 (W3 f 2 (W2f 1 (W1p + b1) + b2) + b3)

1– 1

Network Architectures

2-13

2

than those without, and that is true. Note, for instance, that a neuron with-
out a bias will always have a net input of zero when the network inputs

 are zero. This may not be desirable and can be avoided by the use of a
bias. The effect of the bias is discussed more fully in Chapters 3, 4 and 5.

In later chapters we will omit a bias in some examples or demonstrations.
In some cases this is done simply to reduce the number of network param-
eters. With just two variables, we can plot system convergence in a two-di-
mensional plane. Three or more variables are difficult to display.

Recurrent Networks
Before we discuss recurrent networks, we need to introduce some simple
building blocks. The first is the delay block, which is illustrated in Figure
2.11.

Figure 2.11 Delay Block

The delay output is computed from its input according to

. (2.7)

Thus the output is the input delayed by one time step. (This assumes that
time is updated in discrete steps and takes on only integer values.) Eq. (2.7)
requires that the output be initialized at time . This initial condition
is indicated in Figure 2.11 by the arrow coming into the bottom of the delay
block.

Another related building block, which we will use for the continuous-time
recurrent networks in Chapters 15Ð18, is the integrator, which is shown in
Figure 2.12.

n
p

Delay

AA
AAD

a(t)u(t)

a(0)

a(t) = u(t - 1)

Delay

a t() u t()

a t() u t 1–()=

t 0=

Integrator

2 Neuron Model and Network Architectures

2-14

Figure 2.12 Integrator Block

The integrator output is computed from its input according to

. (2.8)

The initial condition is indicated by the arrow coming into the bottom
of the integrator block.

We are now ready to introduce recurrent networks. A recurrent network is
a network with feedback; some of its outputs are connected to its inputs.
This is quite different from the networks that we have studied thus far,
which were strictly feedforward with no backward connections. One type of
discrete-time recurrent network is shown in Figure 2.13.

Figure 2.13 Recurrent Network

a(t)

a(0)

Integrator

u(t)

a(t) = u(τ) dτ + a(0)
0

t

a t() u t()

a t() u τ() τd
0

t

∫ a 0()+=

a 0()

Recurrent Network

Recurrent Layer

1

AA

AA
AA

S x 1
S x S

S x 1

S x 1 S x 1

Initial
Condition

p
a(t + 1)n(t + 1)W

b

S S

AA
AA

D

AA
AA
AA a(t)

a(0) = p a(t + 1) = satlins (Wa(t) + b)

S x 1

Network Architectures

2-15

2

In this particular network the vector supplies the initial conditions (i.e.,
). Then future outputs of the network are computed from previ-

ous outputs:

, , . . .

Recurrent networks are potentially more powerful than feedforward net-
works and can exhibit temporal behavior. These types of networks are dis-
cussed in Chapters 3 and 15Ð18.

p
a 0() p=

a 1() satlins Wa 0() b+()= a 2() satlins Wa 1() b+()=

2 Neuron Model and Network Architectures

2-16

Summary of Results

Single-Input Neuron

Multiple-Input Neuron

a = f (wp + b)

General Neuron

an

Inputs

AA
b

p w

1

AAΣ f

Multiple-Input Neuron

p1

an

Inputs

b

p2
p3

pR
w1, R

w1, 1

1

AA
AAΣ

a = f (Wp + b)

AA
AAf

AA
AA
AA

f

Multiple-Input Neuron

a = f (Wp + b)

p a

1

nAW

A
Ab

R x 1
1 x R

1 x 1

1 x 1

1 x 1

Input

R 1

Summary of Results

2-17

2

Transfer Functions

Name Input/Output Relation Icon
MATLAB
Function

Hard Limit hardlim

Symmetrical Hard Limit hardlims

Linear purelin

Saturating Linear satlin

Symmetric Saturating
Linear

satlins

Log-Sigmoid logsig

Hyperbolic Tangent
Sigmoid

tansig

Positive Linear poslin

Competitive compet

a 0 n 0<=

a 1 n 0≥=

AA
AA

a 1 n 0<–=

a +1 n 0≥=

AA
AA

a n=

AA
AA

a 0 n 0<=

a n 0 n 1≤ ≤=

a 1 n 1>= AA
AA

a 1 n 1–<–=

a n 1– n 1≤ ≤=

a 1 n 1>= AA
AA

a
1

1 e n–+
----------------=

AA
AA

a
en e n––

en e n–+
------------------=

AA
AA

a 0 n 0<=

a n 0 n≤=

AA
AA

a 1 neuron with max n=

a 0 all other neurons= AA
AA

C

2 Neuron Model and Network Architectures

2-18

Layer of Neurons

Three Layers of Neurons

Delay

AA
AA
AA

f

Layer of S Neurons

a = f(Wp + b)

p a

1

nAAW

AA
AA

b

R x 1
S x R

S x 1

S x 1

S x 1

Input

R S

First Layer

AA
AA
AA

f 1

AA
AA
AA

f 2

AA
AA
AA

f 3

p a1 a2

AAW1

AA
AA

b1

AAW2

AA
AA

b21 1

n1 n2

a3

n3

1

AAW3

AA
AA

b3

S2 x S1

S2 x 1

S2 x 1

S2 x 1
S3 x S2

S3 x 1

S3 x 1

S3 x 1R x 1
S1 x R

S1 x 1

S1 x 1

S1 x 1

Input

R S1 S2 S3

Second Layer Third Layer

a1 = f 1 (W1p + b1) a2 = f 2 (W2a1 + b2) a3 = f 3 (W3a2 + b3)

a3 = f 3 (W3 f 2 (W2f 1 (W1p + b1) + b2) + b3)

AA
AAD

a(t)u(t)

a(0)

a(t) = u(t - 1)

Delay

Summary of Results

2-19

2

Integrator

Recurrent Network

How to Pick an Architecture
Problem specifications help define the network in the following ways:

1. Number of network inputs = number of problem inputs

2. Number of neurons in output layer = number of problem outputs

3. Output layer transfer function choice at least partly determined by
problem specification of the outputs

a(t)

a(0)

Integrator

u(t)

a(t) = u(τ) dτ + a(0)
0

t

Recurrent Layer

1

AA

AA
AA

S x 1
S x S

S x 1

S x 1 S x 1

Initial
Condition

p
a(t + 1)n(t + 1)W

b

S S

AA
AA

D

AA
AA
AA a(t)

a(0) = p a(t + 1) = satlins (Wa(t) + b)

S x 1

2 Neuron Model and Network Architectures

2-20

Solved Problems

P2.1 The input to a single-input neuron is 2.0, its weight is 2.3 and its
bias is - 3.

i. What is the net input to the transfer function?

ii. What is the neuron output?

i. The net input is given by:

ii. The output cannot be determined because the transfer function is not
specified.

P2.2 What is the output of the neuron of P2.1 if it has the following
transfer functions?

i. Hard limit

ii. Linear

iii. Log-sigmoid

i. For the hard limit transfer function:

ii. For the linear transfer function:

iii. For the log-sigmoid transfer function:

Verify this result using MATLAB and the function logsig , which is in the
MININNET directory (see Appendix B).

P2.3 Given a two-input neuron with the following parameters: ,

 and , calculate the neuron output for the fol-

lowing transfer functions:

i. A symmetrical hard limit transfer function

ii. A saturating linear transfer function

n wp b+ 2.3() 2() 3–()+ 1.6= = =

a hardlim 1.6() 1.0==

a purelin 1.6() 1.6==

a logsig 1.6() 1

1 e 1.6–+
------------------- 0.8320= = =

» 2 + 2

ans =
 4

b 1.2=

W 3 2= p 5– 6
T

=

Solved Problems

2-21

2

iii. A hyperbolic tangent sigmoid (tansig) transfer function

First calculate the net input :

.

Now find the outputs for each of the transfer functions.

i.

ii.

iii.

P2.4 A single-layer neural network is to have six inputs and two out-
puts. The outputs are to be limited to and continuous over the
range 0 to 1. What can you tell about the network architecture?
Specifically:

i. How many neurons are required?

ii. What are the dimensions of the weight matrix?

iii. What kind of transfer functions could be used?

iv. Is a bias required?

The problem specifications allow you to say the following about the net-
work.

i. Two neurons, one for each output, are required.

ii. The weight matrix has two rows corresponding to the two neurons and
six columns corresponding to the six inputs. (The product is a two-el-
ement vector.)

iii. Of the transfer functions we have discussed, the transfer func-
tion would be most appropriate.

iv. Not enough information is given to determine if a bias is required.

n

n Wp b+ 3 2
5–

6
1.2()+ 1.8–= = =

a hardlims 1.8–() 1–==

a satlin 1.8–() 0= =

a tansig 1.8–() 0.9468–= =

Wp

logsig

2 Neuron Model and Network Architectures

2-22

Epilogue

This chapter has introduced a simple artificial neuron and has illustrated
how different neural networks can be created by connecting groups of neu-
rons in various ways. One of the main objectives of this chapter has been to
introduce our basic notation. As the networks are discussed in more detail
in later chapters, you may wish to return to Chapter 2 to refresh your mem-
ory of the appropriate notation.

This chapter was not meant to be a complete presentation of the networks
we have discussed here. That will be done in the chapters that follow. We
will begin in Chapter 3, which will present a simple example that uses
some of the networks described in this chapter, and will give you an oppor-
tunity to see these networks in action. The networks demonstrated in
Chapter 3 are representative of the types of networks that are covered in
the remainder of this text.

Exercises

2-23

2

Exercises

E2.1 The input to a single input neuron is 2.0, its weight is 1.3 and its bias is 3.0.
What possible kinds of transfer function, from Table 2.1, could this neuron
have, if its output is:

i. 1.6

ii. 1.0

iii. 0.9963

iv. - 1.0

E2.2 Consider a single-input neuron with a bias. We would like the output to be
- 1 for inputs less than 3 and +1 for inputs greater than or equal to 3.

i. What kind of a transfer function is required?

ii. What bias would you suggest? Is your bias in any way related to the
input weight? If yes, how?

iii. Summarize your network by naming the transfer function and stat-
ing the bias and the weight. Draw a diagram of the network. Verify
the network performance using MATLAB.

E2.3 Given a two-input neuron with the following weight matrix and input vec-

tor: and , we would like to have an output of 0.5. Do

you suppose that there is a combination of bias and transfer function that
might allow this?

i. Is there a transfer function from Table 2.1 that will do the job if the
bias is zero?

ii. Is there a bias that will do the job if the linear transfer function is
used? If yes, what is it?

iii. Is there a bias that will do the job if a log-sigmoid transfer function
is used? Again, if yes, what is it?

iv. Is there a bias that will do the job if a symmetrical hard limit trans-
fer function is used? Again, if yes, what is it?

E2.4 A two-layer neural network is to have four inputs and six outputs. The
range of the outputs is to be continuous between 0 and 1. What can you tell
about the network architecture? Specifically:

» 2 + 2

ans =
 4

W 3 2= p 5– 7
T

=

2 Neuron Model and Network Architectures

2-24

i. How many neurons are required in each layer?

ii. What are the dimensions of the first-layer and second-layer weight
matrices?

iii. What kinds of transfer functions can be used in each layer?

iv. Are biases required in either layer?

