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An improved neural network �NN� approach is presented for the simultaneous development of
accurate potential-energy hypersurfaces and corresponding force fields that can be utilized to
conduct ab initio molecular dynamics and Monte Carlo studies on gas-phase chemical reactions.
The method is termed as combined function derivative approximation �CFDA�. The novelty of the
CFDA method lies in the fact that although the NN has only a single output neuron that represents
potential energy, the network is trained in such a way that the derivatives of the NN output match
the gradient of the potential-energy hypersurface. Accurate force fields can therefore be computed
simply by differentiating the network. Both the computed energies and the gradients are then
accurately interpolated using the NN. This approach is superior to having the gradients appear in the
output layer of the NN because it greatly simplifies the required architecture of the network. The
CFDA permits weighting of function fitting relative to gradient fitting. In every test that we have run
on six different systems, CFDA training �without a validation set� has produced smaller
out-of-sample testing error than early stopping �with a validation set� or Bayesian regularization
�without a validation set�. This indicates that CFDA training does a better job of preventing
overfitting than the standard methods currently in use. The training data can be obtained using an
empirical potential surface or any ab initio method. The accuracy and interpolation power of the
method have been tested for the reaction dynamics of H+HBr using an analytical potential. The
results show that the present NN training technique produces more accurate fits to both the
potential-energy surface as well as the corresponding force fields than the previous methods. The
fitting and interpolation accuracy is so high �rms error=1.2 cm−1� that trajectories computed on the
NN potential exhibit point-by-point agreement with corresponding trajectories on the analytic
surface. © 2009 American Institute of Physics. �DOI: 10.1063/1.3095491�

I. INTRODUCTION

The interpolation of ab initio potential energy surface
�PES� data using neural networks �NNs� �Refs. 1–14� and
other methods15–33 for the purpose of executing molecular
dynamics �MD� simulations has been a subject of consider-
able interest. Recently, Raff et al.1 investigated in detail a
method involving the use of NNs and novelty sampling �NS�
to affect the interpolation of ab initio PES data. The results
of such studies1 performed for Sin �n=3,4 , . . . ,7�,34 SiO2,35

HONO,36 and vinyl bromide2 systems show that the NN/NS
method is very promising in terms of accuracy, convenience,
and the requirement of Central Processing Unit �CPU� time.
Our recent study2 on the vinyl bromide dissociation dynam-
ics demonstrates the success of the NN method for MD
simulations of a six-atom system having six open reaction
channels.

All of the MD studies performed up to the present time
have concentrated only on the fitting of the potential energy,
although the force field is the key component for the MD

simulation. This situation is due to two factors. First, the ab
initio computation of surface gradients requires far more
computational effort than just the potential itself. Second,
Shepard15,18,20–22,24–26,28 and Interpolative Moving Least
Squares �IMLS� 31–33 methods are not easily adaptable to
fitting surface gradients and adapting NN methods to the
simultaneous fitting of both the potential and its gradients
requires a significant modification37 of the usual NN fitting
methods.38 Since the forces can be computed by differentiat-
ing the potential surface, it has been assumed in the past that
an accurate potential surface will yield accurate forces with-
out specifically fitting the forces. Witkoskie and Doren39 re-
cently reported a NN method in which the gradient of a
function is utilized to improve the NN fit to the function. As
this research is related to the present method it is discussed
in more details in the next section.

In section II of this paper we present a NN training
method that explicitly and simultaneously fits both the po-
tential surface and its corresponding force field. Although the
output layer of the NN contains only a single neuron that
gives the potential energy, the derivatives of the NN with
respect to its inputs are automatically adjusted to match thea�Electronic mail: lionel.raff@okstate.edu.
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target gradients. This procedure is more efficient than having
the gradients produced by separate neurons in the output
layer as such a procedure would greatly increase the com-
plexity of the NN.

II. NN TRAINING METHOD

Previous efforts to fit NNs to PESs involved an optimi-
zation procedure in which the mean square error between the
network output and the desired potential surface was mini-
mized. The typical mean square error is computed as fol-
lows:

Jf�w� =
1

Q
�
q=1

Q

�V�pq� − a�pq��2, �1�

where V is the potential energy, a is the output of the net-
work, and pq is the column vector of the internal coordinates
of the qth cluster in the data set currently being used to
determine the NN force field.

Witkoskie and Doren39 modified Eq. �1� to incorporate
the use of gradient information to improve the NN fit to the
function with perhaps fewer data and number of neurons.
However, no data are given concerning the accuracy with
which their improved function fit also fits the known gradi-
ents. Also, their method does not allow for adjustment of the
relative weights to be assigned to fitting the surface and fit-
ting the gradients. Since there is only one potential but many
gradients which will span a very large range of values on a
typical potential-energy hypersurface, relative weighting can
be important in obtaining optimum interpolation accuracy.
Witkoskie and Doren39 applied the method to a simple, sepa-
rable, two-dimensional function that was a Morse potential
in one dimension modified by a multiplicative sinusoidal
function in the second dimension. Since their work concen-
trated on using the gradient to improve the fit of the NN to
the function rather than accurately fit the gradient itself, Wit-
koskie and Doren39 did not report the accuracy of the gradi-
ents predicted by their final NN fit. No MD simulations on a
realistic, highly coupled model potential-energy hypersurface
for a chemical system were reported.

The present paper along with those in Ref. 37 presents a
general method for simultaneously fitting both a function and
its gradient. The underlying equations summarized here and
derived in detail in the paper in Ref. 37 are applicable to any
system for which a sufficiently large database is available.
They apply to NNs with any number of elements in the input
vector, any number of layers and neurons in each layer, and
any transfer functions. The basis of the method is the use of
a performance function that explicitly requires the simulta-
neous fitting of both function and gradient and the incorpo-
ration of relative weighting of surface and gradient fitting.
We apply the resulting method to a realistic, three-body
potential-energy hypersurface and demonstrate that MD tra-
jectories computed on the NN resulting from the combined
function derivative approximation �CFDA� method exhibit a
point-by-point agreement with the corresponding trajectories
computed on the model analytic potential hypersurface.

The mean square error performance function given by
Eq. �1� does not explicitly penalize errors in the potential

gradients, which determine the force field. If the potential is
accurately captured by the NN, then we would expect that
the gradients would also be reasonably approximated, but
this is not assured. We have recently proposed a procedure
that explicitly penalizes both the errors in the potential and in
the gradient. The performance index is defined as

J�w� =
1

Q
�
q=1

Q

�V�pq� − a�pq��2

+
�

QR
�
q=1

Q

�
i=1

R �� �V�p�
�pi

�
p=pq

− � �a�p�
�pi

�
p=pq

�2

,

=Jf�w� + �Jd�w� , �2�

where w is the vector containing all of the weights and biases
in the NN and � is a scale factor that determines the relative
importance of potential error and gradient error.37

By using Eq. �2�, we are able to approximate both a
potential surface and its gradient with a NN that has a single
neuron in the last layer, representing only the potential. In
the remainder of the paper, we will demonstrate the opera-
tion of this CFDA training algorithm on a classic analytical
potential hypersurface representing the H2Br system and
conduct MD studies on the exchange and abstraction dynam-
ics occurring in H+HBr collisions. It will be shown that
trajectories computed using NN fits obtained from Eq. �2�
produce a point-by-point agreement with those computed us-
ing the analytic hypersurface.

The CFDA algorithm minimizes the performance func-
tion defined in Eq. �2� using standard gradient-based �e.g.,
the Broyden-Fletcher-Goldfarb-Shanno �BFGS� quasi-
Newton method40� or Jacobian-based �e.g., the Levenberg–
Marquardt method41� optimization procedures. The difficulty
in using Eq. �2�, instead of Eq. �1�, for NN training is that it
requires the computation of second derivatives of the NN
response. This is in contrast to the standard
backpropagation42 training algorithm for NNs, which is de-
signed for Eq. �1� and requires only the computation of first
derivatives of the NN response.

The details of the gradient calculation are provided by
Pukrittayakamee et al.37 We will provide a summary of the
calculations here. We begin by introducing the notation that
we will use for the NN. Figure 1 is an example of a
multilayer network �two layers are shown in this case, but an
arbitrary number of layers can be used�. The input vector to
the network is represented by p, which has R elements. The
input is connected to layer 1 through the input weight W1,

FIG. 1. Schematic of a two-layer NN.
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where the superscript represents the layer number. The bias
for the first layer is represented by b1. The net input to layer
1 is denoted by n1 and is computed as

n1 = W1p + b1. �3�

In scalar notation this becomes

ni
1 = �

j=1

R

wi,j
1 pj + bi

1. �4�

The output of layer 1, which is a1, is computed by pass-
ing the net input through a transfer function according to

a1 = f1�n1� . �5�

This layer output has S1 elements. The output of the first
layer is input to the second layer through the layer weight
W2. A network can have any number of layers although two-
and three-layer networks are generally used. The equations
for successive layers can be expressed as follows:

nm = Wmam−1 + bm, am = fm�nm� . �6�

If there are M layers in the network, the output of the final
layer is identified as the network output a=aM.

We are now ready to calculate the gradient of J�w� with
respect to the weights and biases of the network. The gradi-
ent of Jf�w� is computed using the standard backpropagation
algorithm.40 In the following, we will summarize the gradi-
ent calculation for Jd�w�.

An element of this gradient that corresponds to a net-
work weight will take the form

�Jd�w�
�wi,j

m =
− 2

QR
�
q=1

Q

�
r=1

R �� �V�p�
�pr

�
p=pq

− � �a�p�
�pr

�
p=pq

�
� � �

�wi,j
m

�a�p�
�pr

�
p=pq

. �7�

If we define the two terms

vi,q
m = �

r=1

R ��� �V�p�
�pr

�
p=pq

− � �a�p�
�pr

�
p=pq

�
� � �

�pr

�a�p�
�ni

m �
p=pq

� �8�

and

uqi,r

m = �� �V�p�
�pr

�
p=pq

− � �a�p�
�pr

�
p=pq

� � � �a�p�
�ni

m �
p=pq

,

�9�

we can rewrite the element of the gradient as

�Jd�w�
�wi,j

m =
− 2

QR
���

q=1

Q

aj
m−1�pq�vi,q

m �
+ �

q=1

Q

�
r=1

R �� �aj
m−1�p�
�pr

�
p=pq

uqi,r

m �� . �10�

To use Eq. �10�, we need to compute the following three
terms: vi,q

m , uqi,r

m , and

� �aj
m−1�p�
�pr

�
p=pq

.

The term

� �aj
m−1�p�
�pr

�
p=pq

is updated forward from layer to layer using

� �aj
m�p�

�pr
�

p=pq

= ḟm�nj,q
m � �

l=1

Sm−1

wj,l
m � � �al

m−1�p�
�pr

�
p=pq

,

�11�

which is initialized at the first layer with

� �aj
m�p�

�pr
�

p=pq

= 	1, j = r

0, j � r .

 �12�

The term uqi,r

m is backpropagated from layer to layer us-
ing

uqi,r

m = ḟm�ni,q
m � �

l=1

Sm+1

�wl,i
m+1 � uql,r

m+1� , �13�

which is initialized at the last layer �layer M� using

uq1,r

M = ḟM�ni,q
M ��� �V�p�

�pr
�

p=pq

− � �a�p�
�pr

�
p=pq

� . �14�

The term vi,q
m is backpropagated from layer to layer using

vi,q
m = ḟm�ni,q

m � �
l=1

Sm+1

�wl,i
m+1 � vi,q

m+1�

+ �
r=1

R
� ḟm�ni,q

m �
�pr

�
l=1

Sm+1

�wl,i
m+1 � uql,r

m+1� , �15�

which is initialized at the last layer �layer M� using

vi,q
M = �

r=1

R ��� �V�p�
�pr

�
p=pq

− � �a�p�
�pr

�
p=pq

� �
� ḟM�ni,q

M �
�pr

� .

�16�

Therefore, using Eqs. �11�, �13�, and �15�, we can com-
pute the terms needed in Eq. �10� to compute the elements of
the gradient which correspond to weights in the NN. For the
terms in the gradient which correspond to bias elements, Eq.
�10� is replaced with Eq. �17�,

�Jd�w�
�bi

m =
− 2

QR
�
q=1

Q

vi,q
m . �17�

This completes the gradient calculation. Once the gradi-
ent has been computed, any gradient-based optimization al-
gorithm can be used to optimize the network weights and
biases �e.g., conjugate gradient, BFGS quasi-Newton, etc.�.
For Jacobian-based algorithms �e.g., Gauss–Newton,
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Levenberg–Marquardt, extended Kalman filter, etc.�, a simi-
lar procedure to that described above can be used to compute
the Jacobian. In our experience, both BFGS quasi-Newton
and Levenberg–Marquardt algorithms have produced excel-
lent results.

There is one other step that is required to use the CFDA
algorithm, and that is the selection of �. The details of this
selection are given by Pukrittayakamee et al.37 We will pro-
vide a summary of the calculations here. The first step was to
write � as

� =
�

�2
,

where � is the calculated ratio of the maximum absolute
value of the derivative �force� to the maximum absolute
value of the potential energy in the training set. In this way,
� will account for the difference in scales between Jf�w� and
Jd�w�. The same value of the parameter � can then be used
over a variety of problems. This was tested by Pukrittayaka-
mee et al.37 and it was found that �=104 produced accurate
results over a wide variety of fitting problems. That is the
value that we will use in the remainder of this paper.

III. APPLICATION TO THE H2Br SYSTEM

A. Description of analytic potential

The system used to validate the CFDA training proce-
dure is the H+HBr system defined in Fig. 2.

The system was evaluated on the London-Eyring-
Polanyi-Sato �LEPS�-type PES developed by Kuntz et al.,43

V�r1,r1,r1� =
Q1

�1 + a�
+

Q2

�1 + b�
+

Q3

�1 + c�
− � J1

2

�1 + a�2

+
J2

2

�1 + b�2 +
J3

2

�1 + c�2 −
J1J2

�1 + a��1 + b�

−
J2J3

�1 + b��1 + c�
−

J1J3

�1 + a��1 + c��1/2

, �18�

where

Q1

�1 + a�
=

1

2
	1E�r1� + � �1 − a�

�1 + a��3E�r1�
 �19�

and

J1

�1 + a�
=

1

2
	1E�r1� − � �1 − a�

�1 + a��3E�r1�
 �20�

with similar expressions for the other terms. Morse- and
“anti-Morse-type” functions are used to represent the singlet
and triplet energy states, respectively,

1E�r� = Dexp�− 2��r − rc�� − 2 exp�− ��r − rc��� �21�

and

3E�r� = 1
2Dexp�− 2��r − rc�� + 2 exp�− ��r − rc��� , �22�

where the Morse parameters D, �, and rc are obtained from
bond dissociation energies, fundamental vibration frequen-
cies, and equilibrium bond distances in the usual manner.
The values for all parameters for the H2Br system are given
for surface I by Sudhakaran and Raff.44

This LEPS surface has a discontinuity in the gradient.
The location of the discontinuity is defined by the following
conditions:

r2 = r3 and r1 = −
1

�1
ln� k2

2k1
�

1

2
�� k2

k1
�2

+
8P2

k1
� ,

�23�

where

k1 = 	D1 −
1

2
D1

�1 − a�
�1 + a�
exp�2�1rc� ,

k2 = − 	2D1 + D1
�1 − a�
�1 + a�
exp��1rc� ,

and

P2 =
J2

�1 + b�
.

The existence of this discontinuity has caused no problems in
the many MD investigations that have employed Eqs.
�18�–�22� for the potential surface because the loci of points
on the discontinuity seam fall at such high energies that the
discontinuity is never reached for trajectories computed at
energies typical of chemical experiments and calculations.

FIG. 2. H2Br coordinate labels.

FIG. 3. Histogram of number of configurations stored and corresponding
maximum acceleration when the configurations are stored at equally spaced
time intervals. Acceleration is given in units of Å atu−2, where one atomic
time unit �atu� is 1.019�10−14 s.
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We ensured that the same is true in the investigations con-
ducted in this research.

B. Sampling procedure and fitting results

The database used for training the NN was obtained by
computing 1000 trajectories for H+HBr using the analytic
potential given by Eqs. �18�–�22�. This method was origi-
nally proposed and used by Collins.28 Each trajectory in a
given batch was computed at a constant translational energy.
As the trajectories were propagated, H2Br configurations
along with their corresponding potential energies and gradi-
ents were stored at equally spaced time intervals. The en-
semble of these stored configurations, energies, and gradients
comprises the database for NN fitting.

To avoid sampling the discontinuity, NN training data
were collected during MD trajectories that were computed at
relative translational energies of 0.8, 1.0, and 1.2 eV and a
maximum impact parameter bmax of 0.2 Å. The impact pa-
rameter in individual trajectories was randomly selected over
the range from zero to bmax. Since the minimum energy at the
discontinuity lies at 1.65 eV above the reactant H+HBr en-
ergy, the sampling trajectories will never reach the disconti-
nuities at the energies used in the sampling.

For every trajectory, the bond distance between H–Br
was stretched by �0.1 Å��rn, where rn is a random number
selected from a uniform distribution over the interval �0,1�.
Since the HBr vibrational amplitude in the ground vibra-
tional state is �0.1 Å, this procedure effectively averages
over vibrational phase. In all cases, HBr was taken to have
zero rotational energy. Initially, HBr was placed in its equi-
librium configuration and given a vibrational kinetic energy
corresponding to its zero-point energy plus a small additional
potential energy due to the displacement from its equilibrium
configuration. The maximum value of this potential energy
can be obtained from Eq. �21� with r=re+0.1 Å. The veloc-
ity Verlet algorithm was employed to integrate the equations
of motion during the MD simulations.

To effectively sample the configuration space with some-
thing close to a uniform density of points over all regions,

the time interval between sampling � during the trajectories
must be a function of the atomic accelerations. If configura-
tions are stored at every integration step, the database will
include more points from regions where the forces are small
than from regions characterized by large forces simply be-
cause the atoms will spend less time in regions where the
forces are large. To minimize this effect, we have adopted the
following algorithms for the sampling time interval:

� = trunc�5�amax�−1��t if trunc�5�amax�−1� 	 0

and

� = trunc�5�amax�−1��t + �t if trunc�5�amax�−1� = 0,

�24�

where

amax = max�a1,a2,a3�

and

ai = �mi�−1�Pi� . �25�

In Eqs. �24� and �25�, ai is the absolute value of the accel-
eration of atom i, mi and Pi are the corresponding atomic

TABLE I. rms test set errors for Bayesian regularization and CFDA for ten
different NNs.

Bayesian regularization CFDA

Potential
�eV�

Forces
�eV/Å�

Potential
�eV�

Forces
�eV/Å�

3.3035�10−4 7.6882�10−3 1.4525�10−4 1.8398�10−3

6.5614�10−4 9.4262�10−3 1.5777�10−4 1.6662�10−3

3.5913�10−4 5.8481�10−3 1.5975�10−4 1.7043�10−3

2.3396�10−4 4.3689�10−3 1.9860�10−4 2.4132�10−3

4.2139�10−4 7.7385�10−3 1.4370�10−4 1.2003�10−3

3.0202�10−4 7.6737�10−3 2.3570�10−4 3.4086�10−3

5.3780�10−4 2.3082�10−2 1.1207�10−4 1.3807�10−3

5.0875�10−4 7.2271�10−3 1.3950�10−4 1.4527�10−3

1.4652�10−3 1.2323�10−2 1.4333�10−4 2.5245�10−3

7.8513�10−4 9.3164�10−3 2.0005�10−4 1.5358�10−3

FIG. 4. Histogram of a number of configurations stored and corresponding
maximum acceleration when the time interval for sampling is obtained from
Eqs. �24� and �25�. Acceleration is given in units of Å atu−2, where one
atomic time unit �atu� is 1.019�10−14 s.

FIG. 5. �Color online� Data sampling and location of the discontinuity in the
Sudhakaran–Raff analytic potential denoted as surface I in Ref. 33. The
curve in the figure shows the location of the discontinuity.
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mass and momentum vector, respectively, and �t is the inte-
gration step size. amax is the maximum of the acceleration of
the three atoms and the operation trunc�x� yields the integer
part of x. The value of � is periodically updated during the
trajectory. Thus, as amax becomes large when the forces are
large, � will approach �t, and we sample at every integration
point in the trajectory. In regions of small force where amax is
small, � will assume larger values, and we will sample less
frequently. The numerator of Eq. �24� is system dependent
and must be determined empirically as was done in the
present work.

Figures 3 and 4 show the operation of the time interval
algorithm given by Eqs. �24� and �25�. Each figure shows a
histogram of the number of configurations stored as a func-
tion of the maximum acceleration for 100 trajectories on the
H+HBr analytic surface. The results reported in Fig. 3 were
obtained by sampling at equally spaced time intervals
throughout all trajectories. The sampling for Fig. 4 was ex-
ecuted using Eqs. �24� and �25�. When sampling is done at
constant time intervals, a preponderance of the sampled
points lie in regions where forces are small. When the
weighted sampling described by Eqs. �24� and �25� is em-
ployed, all regions are sampled much more uniformly.

Figure 5 shows the regions where the trajectories were
sampled and the location of the discontinuity, which is indi-
cated by the curve in the figure.

A total of 470 000 data points were sampled. From these
available data, 3000 points were selected at random to train
the NN. When the reaction of interest is a single two-center
bond dissociation gas-phase reaction in a three- or four-atom
system, the database employed generally contains 300–6500
points. For a representative sampling of 23 such systems, the
reader may consult Table II of Ref. 45. Consequently, the
number of training points employed here is typical for reac-
tions of this degree of complexity. The 467 000 points not
included in the training set were used as the test set. This
testing set is far more extensive than that usually employed
in most applications of NNs to potential-energy surfaces.
Since the purpose of the present investigation is validation of
the CFDA method, we have elected to employ such a test set

to ensure that NNs produced by the method are thoroughly
and completely tested in all important regions of the H2Br
configuration space.

Because the results can be sensitive to the data selected
and to the initial NN weights, ten different NNs were trained.
Each network was trained with a different selection of data
points and different initial weights. The median results on the
complete 470 000 data points were then used to asses the
accuracy of the NN surface. The results for each of the ten
NNs are given in Table I. The median values are given in
Table II. As can be seen, all NNs give very close to identical
results.

Several choices for the number of neurons in the hidden
layer were examined. The extremely small interpolation er-
rors on the testing set demonstrate that our final choice of
150 neurons is close to the optimum number. The implemen-
tation of the NNs is as follows:

p = �r1

r2

r3
� , �26�

a1 = tanh�W1p + b1� , �27�

a2 = W2a1 + b2, �28�

where W1 is a 150�3 weight matrix, b1 is a 150�1 bias
vector, W2 is a 1�150 weight matrix, and b2 is a scalar
bias. The network output a2 is the system potential, which is
trained to match the potential energy and the associated gra-
dients using the CFDA method.

Table II shows the median rms test set errors for the
Bayesian regularization method, where only the potential is
fitted, and the CFDA algorithm. In previous work, the Baye-
sian regularization method has produced the best perfor-
mance; therefore, we will use it as a benchmark. Here, we
can see that the CFDA algorithm provides significantly
smaller errors on both the potential surface and the force
field.

TABLE II. Median rms test set errors for Bayesian regularization and CFDA. Training set contains 3000 data
points. Test set contains 467 000 data points. The potential errors are expressed in eV and the force errors are
expressed in eV/Å.

Bayesian regularization CFDA

Potential Force Second derivative Potential Force Second derivative

4.65�10−4 7.71�10−3 1.10�10−1 1.51�10−4 1.68�10−3 2.76�10−2

TABLE III. Median rms test set errors for Bayesian regularization and CFDA. Training set contains 1500 data
points. Test set contains 468 500 data points. The potential errors are expressed in eV and the force errors are
expressed in eV/Å.

Bayesian regularization CFDA

Potential Force Second derivative Potential Force Second derivative

1.27�10−3 1.39�10−2 1.09�10−1 9.82�10−4 7.49�10−3 5.65�10−2

134101-6 Pukrittayakamee et al. J. Chem. Phys. 130, 134101 �2009�

Downloaded 14 May 2009 to 139.78.49.186. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



The errors shown in Table II were obtained with a net-
work trained with only 3000 data points. The errors were
measured over a test set of 467 000 data points. The fact that
the test set errors for the CFDA algorithm are lower than
those for the Bayesian regularization algorithm �which was
designed to prevent overfitting� on such a large test set dem-
onstrates that the CFDA algorithm �without a validation set�
does a better job of preventing overfitting than the standard
methods. One would not generally have such a large test set
available. We have used a large one in this case in order to
clearly demonstrate the reduction in overfitting when using
CFDA methods �without a validation set�. The large test set
also permits us to demonstrate that the CFDA algorithm pro-
vides an excellent fit over the entire configuration space im-
portant in the H2Br reaction dynamics.

To provide further demonstrations of the ability of the
CFDA algorithm to reduce overfitting without a validation
set, we trained networks with even fewer data points. Table
III shows the results of training with 1500 randomly selected
data points and Table IV shows the results of training with
only 750 data points. In both cases, the remainder of the
470 000 points is used for testing. The test errors increase in
size as the number of training points is decreased. This is to
be expected since we are not covering the input space ad-
equately. However, in each case, the CFDA error on the test
set is lower than the Bayesian regularization error. Since
Bayesian regularization is the best standard method we have
found for reducing overfitting, this presents a strong case that
the CFDA method does a better job of reducing overfitting
without a validation set, even when the training set is very
small. We also note that the very small errors for the second
derivatives indicate that the first derivative cannot be

changed rapidly between data points. In this regard, we note
that no one would attempt to study a three-dimensional sys-
tem with three energetically open reaction channels, inelastic
scattering, abstraction, and exchange with fewer than 750
data points.

In a previously reported study,37 we employed the CFDA
to fit five other systems that include four analytical potentials
and a database for Si5 obtained from electronic structure cal-
culations. In each case, every test that we have run shows
that CFDA training �without a validation set� has produced
smaller, out-of-sample testing error than early stopping �with
a validation set� or Bayesian regularization �without a vali-
dation set�. This indicates that CFDA training does a better
job of preventing overfitting than the standard methods cur-
rently in use.

Figure 6 shows a comparison of the LEPS potential en-
ergies and the corresponding NN results for the test set con-
figurations. If the NN fit were perfect, all points would fall
on a 45° line. Figure 7 shows the distribution of errors in the
potential for the median network. The median rms deviation
of the NN and Sudhakaran/Raff energies is 1.51�10−4 eV
�1.2 cm−1�. Clearly, the fit is nearly exact. Since the energies
in the database span a range of about 2 eV, this interpolation
accuracy represents an average percent error of about
0.0075%.

Figure 8 shows a comparison of the LPS force along r1

and the corresponding NN results for the test set configura-
tions. Figure 9 shows the distribution of errors in the r1 force
for the median network. The median rms deviation of the NN
and Sudhakaran–Raff r1 force is 1.68�10−3 eV /Å. Since
the forces span a range of about 10.5 eV/Å, this interpolation
error represents a percent error of about 0.016%.

TABLE IV. Median rms test set errors for Bayesian regularization and CFDA. Training set contains 750 data
points. Test set contains 469 250 data points. The potential errors are expressed in eV and the force errors are
expressed in eV/Å.

Bayesian regularization CFDA

Potential Force Second derivative Potential Force Second derivative

3.52�10−3 2.28�10−2 2.00�10−1 2.22�10−3 1.19�10−2 9.81�10−2

FIG. 6. �Color online� Comparison of Sudhakaran–Raff energies with the
predictions of the median NN for a test set of 470 000 configurations.

FIG. 7. �Color online� Distribution of interpolation errors in the potential for
the median NN.
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These extremely small errors over such an extensive
testing set demonstrate that the NN obtained from the CFDA
method produces an excellent fit in all regions of configura-
tion space which include the repulsive walls, potential
minima, and the flat regions of the potential. The excellent fit
also demonstrates that we do not experience overfitting in
spite of the fact that the CFDA method does not employ a
validation set. If overfitting were present, such a small test-
ing set error could not be obtained.

C. Reaction dynamics

The reaction dynamics of H+HBr were investigated us-
ing the median NN trained as described in section III B. The
three open reaction or scattering channels are

�1� Exchange:H2+H1Br→H2Br+H1,
�2� Abstraction:H2+H1Br→H1H2+Br, and
�3� No reaction.

The reaction channel resulting in the dissociation of all
three atoms was energetically closed for our tests.

MD trajectories were run using both the median NN sur-
face and the LEPS-type Sudhakaran–Raff potential-energy
surface. The velocity Verlet algorithm was employed to inte-

grate the equations of motion during the MD simulations. A
total of 1000 MD trajectories were run at relative transla-
tional energies of 0.8, 1.0, and 1.2 eV. None of these trajec-
tories were contained in the set used for sampling the con-
figuration space to obtain the database. The maximum
impact parameter and the initial internal HBr energies were
selected in the same manner as previously described for sam-
pling trajectories. The impact parameters for the 1000 MD
simulations were selected randomly over the range from zero
to bmax.

Table V shows the number of trajectories reacting into
each energetically open channel computed using the analyti-
cal potential and the NN at a relative translational energy of
1.2 eV. The results for each of the 1000 trajectories were
identical.

Figures 10 and 11 show the temporal dependence of the
difference between the bond distances and corresponding en-
ergies, respectively, computed using the analytical potential
and the NN during the MD simulation for one randomly
chosen trajectory. The figures are both highly magnified to
allow us to appropriately illustrate the very small errors. The
maximum absolute deviation for the three bond distances in
this trajectory is 0.0003 Å. During most of the trajectory, the
deviations are less than 0.0001 Å. The absolute deviation of
the total energy lies between 0.0001 and 0.0002 eV over
most of the trajectory. This particular trajectory shows a mo-
mentary increase to 0.0006 eV. These results are in accor-
dance with the 1.51�10−4 eV standard energy deviation
shown in Figs. 6 and 7. Although Figs. 10 and 11 show the
results for a single trajectory, these figures are typical of all
1000 trajectories investigated.

These extremely small differences seen in Figs. 10 and
11 demonstrate that NNs trained using the CFDA method
produce essentially a point-by-point match of trajectories
computed on the analytic and NN potential surfaces. That is,

FIG. 8. �Color online� Comparison of Sudhakaran–Raff forces �r1� with the
predictions of the median NN for a test set of 470 000 configurations.

FIG. 9. �Color online� Distribution of interpolation errors in the force �r1�
for the median NN.

FIG. 10. �Color online� Difference between bond distances computed using
the analytical potential and the NN during the MD simulation vs time inte-
gration steps of 0.1 fs.

TABLE V. Reaction yields out of 1000 trajectories at 1.2 eV.

Analytical potential NN

Exchange 728 728
Abstraction 3 3
No reaction 269 269
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plots of the temporal variation in ri �i=1,2 ,3� for a given
trajectory on the analytic and NN surfaces are superimpos-
able within the accuracy of the plot. Previous attempts to
obtain such point-by-point matching of trajectories on ana-
lytic surfaces and numerical fits to such surfaces have
failed.46

IV. CONCLUSIONS

A CFDA method for using NNs to simultaneously fit the
potential-energy hypersurfaces and their corresponding force
fields has been described and tested. The method generalizes
and extends the work of Witkoskie and Doren.39 With this
method, it is possible to accurately fit both the potential and
the force field with a single network, whose only output neu-
ron represents the potential. This feature greatly simplifies
the architecture of the NN. The formulation provides for dif-
ferential weighting of function versus gradient fitting. The
training process adjusts the NN weights so that the NN out-
put matches the potential, while at the same time the deriva-
tives of the NN output with respect to its inputs match the
corresponding force fields.

The CFDA procedure has been tested on an analytical
potential for the H2Br system. It is shown that because the
NN must fit both the function and the gradients, CFDA train-
ing without a validation set reduces overfitting better than the
methods that use a validation set. Similar results have been
reported for five other systems.37 The extremely small inter-
polation errors obtained on an extensive 467 000 point test-
ing set show that the CFDA produces a NN that fits well in
all regions of the potential, repulsive walls, potential minima,
and in the relatively flat portions of the potential. The result-
ing NN fit is almost indistinguishable from the analytic sur-
face. Reaction dynamics show that the fitting method pro-
duces an almost point-by-point match with the analytic
surface for every trajectory.

The CFDA can be directly applied to fitting potential
surfaces whose databases are obtained by ab initio methods.
We have previously reported such application for the Si5
system.37 There will be, of course, more computational dif-
ficulties in executing the electronic structure calculations to
obtain the potential and its gradients, but once completed, the
application of the CFDA to fitting and interpolating the re-

sulting database is the same. The method is also applicable to
systems of larger dimensionality without modification of the
underlying equations. We have previously developed meth-
ods for sampling systems containing six atoms that are un-
dergoing simultaneous reaction into six different two- and
three-center reaction channels.1,2 In such cases, the input
vector to the NN will be larger and more neurons will be
required. There will be substantially more gradients in Eq.
�2�, but the equations underlying the CFDA method are the
same. The additional difficulty of treating larger systems us-
ing ab initio methods lies primarily in the increased compu-
tational time required, but this is to be expected as the com-
plexity and size of the system increase.

ACKNOWLEDGMENTS

This project is funded by the National Science Founda-
tion, Division of Civil, Mechanical, and Manufacturing In-
novation �CMMI� �Grant No. DMI-0457663�. The authors
thank Dr. Jocelyn Harrison, Program Director for Materials
Processing and Manufacturing, for the interest and support of
this work. One of the authors �R.K.� also thanks A. H. Nel-
son, Jr. Endowed Chair for additional financial support.

1 L. M. Raff, M. Malshe, M. Hagan, D. I. Doughan, M. G. Rockley, and R.
Komanduri, J. Chem. Phys. 122, 084104 �2005�.

2 M. Malshe, L. M. Raff, M. G. Rockley, M. Hagan, P. M. Agrawal, and R.
Komanduri, J. Chem. Phys. 127, 134105 �2007�.

3 S. Lorenz, A. Groß, and M. Scheffler, Chem. Phys. Lett. 395, 210
�2004�.

4 D. F. R. Brown, M. N. Gibbs, and D. C. Clary, J. Chem. Phys. 105, 7597
�1996�.

5 T. B. Blank, S. D. Brown, A. W. Calhoun, and D. J. Doren, J. Chem.
Phys. 103, 4129 �1995�.

6 T. B. Blank and S. D. Brown, Anal. Chim. Acta 277, 273 �1993�.
7 S. Hobday, R. Smith, and J. BelBruno, J. Nuclear Instruments and Meth-
ods in Physics Research Section B: Beam Interactions with Materials and
Atoms 153, 247 �1999�.

8 E. Tafeit, W. Estelberger, R. Horejsi, R. Moeller, K. Oettl, K. Vrecko, and
G. J. Reibnegger, J. Mol. Graphics 14, 12 �1996�.

9 H. Gassner, M. Probst, A. Lauenstein, and K. Hermansson, J. Phys.
Chem. A 102, 4596 �1998�.

10 S. Manzhos, Z.-G. Wang, R. Dawes, and T. Carrington, Jr., J. Phys.
Chem. A 110, 5295 �2006�.

11 S. Manzhos and T. Carrington, Jr., J. Chem. Phys. 125, 194105 �2006�.
12 S. Manzhos and T. Carrington, Jr., J. Chem. Phys. 125, 084109 �2006�.
13 S. Manzhos and T. J. Carrington, Jr., J. Chem. Phys. 127, 014103 �2007�.
14 J. Ludwig and D. G. Vlachos, J. Chem. Phys. 127, 154716 �2007�.
15 J. Ischtwan and M. A. Collins, J. Chem. Phys. 100, 8080 �1994�.
16 K. A. Nguyen, I. Rossi, and D. G. Truhlar, J. Chem. Phys. 103, 5522

�1995�.
17 T. Ishida and G. C. Schatz, J. Chem. Phys. 107, 3558 �1997�.
18 K. C. Thompson, M. J. T. Jordan, and M. A. Collins, J. Chem. Phys. 108,

8302 �1998�.
19 L. A. Pederson, G. C. Schatz, T.-S. Ho, T. Hollebeek, H. Rabitz, L. B.

Harding, and G. Lendvay, J. Chem. Phys. 110, 9091 �1999�.
20 R. P. A. Bettens and M. A. Collins, J. Chem. Phys. 111, 816 �1999�.
21 R. P. A. Bettens, M. J. T. Jordan, D. H. Zhang, and M. A. Collins, J.

Chem. Phys. 112, 10162 �2000�.
22 D. H. Zhang, M. A. Collins, and S.-Y. Lee, Science 290, 961 �2000�.
23 L. A. Pederson, G. C. Schatz, T. Hollebeek, T.-S. Ho, H. Rabitz, and L.

B. Harding, J. Phys. Chem. A 104, 2301 �2000�.
24 K. Song and M. A. Collins, Chem. Phys. Lett. 335, 481 �2001�.
25 G. E. Moyano and M. A. Collins, J. Chem. Phys. 119, 5510 �2003�.
26 M. A. Collins and L. Radom, J. Chem. Phys. 118, 6222 �2003�.
27 R. Z. Pascual, G. C. Schatz, G. Lendvay, and D. Troya, J. Phys. Chem. A

106, 4125 �2002�.
28 M. A. Collins, Theor. Chem. Acc. 108, 313 �2002�.
29 C. Crespos, M. A. Collins, E. Pijper, and G. J. Kroes, Chem. Phys. Lett.

FIG. 11. �Color online� Difference between energies computed using the
analytical potential and the NN during the MD simulation vs time integra-
tion steps of 0.1 fs.

134101-9 NN fitting of potential energy and gradients J. Chem. Phys. 130, 134101 �2009�

Downloaded 14 May 2009 to 139.78.49.186. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp

http://dx.doi.org/10.1063/1.1850458
http://dx.doi.org/10.1063/1.2768948
http://dx.doi.org/10.1016/j.cplett.2004.07.076
http://dx.doi.org/10.1063/1.472596
http://dx.doi.org/10.1063/1.469597
http://dx.doi.org/10.1063/1.469597
http://dx.doi.org/10.1016/0003-2670(93)80440-V
http://dx.doi.org/10.1016/0263-7855(95)00087-9
http://dx.doi.org/10.1021/jp972209d
http://dx.doi.org/10.1021/jp972209d
http://dx.doi.org/10.1021/jp055253z
http://dx.doi.org/10.1021/jp055253z
http://dx.doi.org/10.1063/1.2387950
http://dx.doi.org/10.1063/1.2336223
http://dx.doi.org/10.1063/1.2746846
http://dx.doi.org/10.1063/1.2794338
http://dx.doi.org/10.1063/1.466801
http://dx.doi.org/10.1063/1.470536
http://dx.doi.org/10.1063/1.474695
http://dx.doi.org/10.1063/1.476259
http://dx.doi.org/10.1063/1.478830
http://dx.doi.org/10.1063/1.479368
http://dx.doi.org/10.1063/1.481657
http://dx.doi.org/10.1063/1.481657
http://dx.doi.org/10.1126/science.290.5493.961
http://dx.doi.org/10.1021/jp9924575
http://dx.doi.org/10.1016/S0009-2614(01)00020-3
http://dx.doi.org/10.1063/1.1599339
http://dx.doi.org/10.1063/1.1559480
http://dx.doi.org/10.1021/jp0133079
http://dx.doi.org/10.1007/s00214-002-0383-5
http://dx.doi.org/10.1016/S0009-2614(03)01033-9


376, 566 �2003�.
30 C. Crespos, M. A. Collins, E. Pijper, and G. J. Kroes, J. Chem. Phys.

120, 2392 �2004�.
31 G. G. Maisuradze, D. L. Thompson, A. F. Wagner, and M. Minkoff, J.

Chem. Phys. 119, 10002 �2003�.
32 A. Kawano, Y. Guo, D. L. Thompson, A. F. Wagner, and M. Minkoff, J.

Chem. Phys. 120, 6414 �2004�.
33 Y. Guo, A. Kawano, D. L. Thompson, A. F. Wagner, and M. Minkoff, J.

Chem. Phys. 121, 5091 �2004�.
34 M. Malshe, R. Narulkar, L. M. Raff, M. Hagan, S. Bukkapatnam, P. M.

Agrawal, and R. Komanduri, “Development of generalized potential-
energy surfaces �GPES� using many-body expansion, neural networks
�NN�, and moiety energy �ME� approximaton,” J. Chem. Phys. �submit-
ted�.

35 P. M. Agrawal, L. M. Raff, M. Hagan, and R. Komanduri, J. Chem. Phys.
124, 134306 �2006�.

36 H. M. Le and L. M. Raff, J. Chem. Phys. 128, 194310 �2008�.
37 A. Pukrittayakamee, M. Hagan, L. M. Raff, S. Bukkapatnam, and R.

Komanduri, Intelligent Engineering Systems Through Artificial Neural
Networks, ANNIE Vol. 17 �ASME Press, Fairfield, NJ, 2007�.

38 M. T. Hagan, H. B. Demuth, and M. Beale, Neural Network Design
�PWS Publishing Company, Boston, MA, 1996�.

39 J. B. Witkoskie and D. J. Doren, J. Chem. Theory Comput. 1, 14 �2005�.
40 J. E. Dennis and R. B. Schnabel, Numerical Methods for Unconstrained

Optimization and Nonlinear Equations �Prentice-Hall, Englewood Cliffs,
NJ, 1983�.

41 D. Marquardt, J. Soc. Ind. Appl. Math. 11, 431 �1963�.
42 D. E. Rumelhart, G. E. Hinton, and R. J. Williams, Nature �London� 323,

533 �1986�.
43 P. J. Kuntz, E. M. Nemeth, J. C. Polanyi, S. D. Rosner, and C. E. Young,

J. Chem. Phys. 44, 1168 �1966�.
44 M. P. Sudhakaran and L. M. Raff, Chem. Phys. 95, 165 �1985�.
45 M. Malshe, R. Narulkar, L. M. Raff, M. Hagan, S. Bukkapatnam, and R.

Komanduri, J. Chem. Phys. 129, 044111 �2008�.
46 N. Sathyamurthy and L. M. Raff, J. Chem. Phys. 63, 464 �1975�.

134101-10 Pukrittayakamee et al. J. Chem. Phys. 130, 134101 �2009�

Downloaded 14 May 2009 to 139.78.49.186. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp

http://dx.doi.org/10.1063/1.1637337
http://dx.doi.org/10.1063/1.1617271
http://dx.doi.org/10.1063/1.1617271
http://dx.doi.org/10.1063/1.1667458
http://dx.doi.org/10.1063/1.1667458
http://dx.doi.org/10.1063/1.1777572
http://dx.doi.org/10.1063/1.1777572
http://dx.doi.org/10.1063/1.2185638
http://dx.doi.org/10.1063/1.2918503
http://dx.doi.org/10.1021/ct049976i
http://dx.doi.org/10.1137/0111030
http://dx.doi.org/10.1038/323533a0
http://dx.doi.org/10.1063/1.1726803
http://dx.doi.org/10.1016/0301-0104(85)80069-0
http://dx.doi.org/10.1063/1.2957490
http://dx.doi.org/10.1063/1.431126

