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Abstract
This paper proposes a new framework for adapting regu-
larization parameters in order to minimize validation error
during the training  of  feedforward neural networks. A sec-
ond derivative of validation error based regularization
algorithm (SDVR) is  derived using the Gauss-Newton
approximation to the Hessian. The basic algorithm, which
uses incremental updating, allows the regularization
parameter  to be recalculated in each training epoch.
Two variations of the algorithm, called convergent updat-
ing and conditional updating, enable  to be updated over
a variable interval according to the specified control crite-
ria. Simulations on a noise-corrupted parabolic function
with two-inputs and a single output are investigated. The
results demonstrate that the SDVR framework is very
promising for adaptive regularization and can be cost-
effectively applied to a variety of  different problems. 

1. Introduction
Many applications have shown that training a feedforward
neural network with the regularized performance function

 can improve the generalization perfor-
mance of the network if the regularization parameter  is
appropriately estimated. However, how to determine the
parameter  is still an open question. There are several
different approaches to this problem. MacKay’s Bayesian
framework automatically adapts the regularization parame-
ter to maximize the evidence of the training data [1]. The
computation overhead in updating the regularization
parameter can be reduced when the Gauss-Newton approx-
imation to the Hessian matrix is employed [2]. 

A different approach to adaptive regularization is to mini-
mize validation error. In this case, a validation data set,
which is  independent of the training data, is withheld for
decision making. The motivation behind this approach is
based on the assumption that the selected validation set is a
good representative of new data. Therefore, the model with
minimum validation error will have a better chance to gen-
eralize well on novel inputs. The simplest application of
this method is to train the neural network with a number of
different values, and then choose the model having the
smallest validation error.

A more  attractive approach to validation-set-based regular-
ization  is  to  use  an  optimization  algorithm  to adapt   the
parameter  automatically. Consider that the validation
error is a function of network weights, and the network
weights are affected by the  value through the regularized

performance function. Therefore, the validation error is an
implicit function of . These relations can be used to solve
the optimization problem. A gradient descent scheme was
proposed by Larsen et al. [3] using a single validation set,
and extended to multi-fold validation sets [4]. In both
approaches, an updated regularization parameter is calcu-
lated after the network has been trained to convergence
with the previous regularization parameter. After each
parameter update, the network is again trained to conver-
gence. However, the use of gradient descent with conver-
gent updating has always suffered from the problem that
both the resulting model performance and the computation
cost are sensitive to the initial  and the initial learning
rate. An improved algorithm that applies the conjugate gra-
dient technique was reported in [5], but it also uses conver-
gent updating. 

In the following section, we will propose a new framework
for updating the regularization parameter. It uses second
derivative of validation error based regularization (SDVR).
We will show how the the basic SDVR algorithm and its
two variations can be used to reestimate the optimum value
of  before the training algorithm has converged.
Although our discussion is concentrated on a single valida-
tion set with a single parameter , the extension to multi-
fold validation sets and multiple regularization parameters
is straightforward. In the next section we will test this new
framework with several numerical experiments and will
show how to make optimal use of the SDVR framework.

2. SDVR Framework
The SDVR framework has three different implementations,
which are distinguished by the way in which the parameter

 is updated.  The basic SDVR algorithm is derived using
an incremental updating method, which recalculates   in
each training epoch. The convergent updating method opti-
mizes the training performance function with fixed  until
the network converges, then it determines the next esti-
mate. The conditional updating method recomputes the
regularization parameter only if the validation error
increases, or if the trajectory of the validation error is
descending but very flat.

2.1 Incremental Updating
In the incremental updating, we assume that the network is
trained with a batch training algorithm on the training data
set. Its regularized performance index at iteration  is

           ,             (1)

α

α

F eTe αwTw+=
α

α

α

α

α

α

α

α

α

α
α

α

k

Ft wk( ) et wk( )( )T
et wk( ) αkwk

T
wk+=



with  being an  weight vector and  an 
error vector. For next training epoch, the weight vector

 is computed to minimize the performance index by
using the Gauss-Newton method

, (2)
where  is the gradient vector of  with
respect to ,  is the Gauss-Newton approximation
to the Hessian matrix,

, (3)
in which  is an  Jacobian matrix,  is an

 identity matrix, and  is a tunable parameter, as in
the Levenberg-Marquardt implementation [6], [7].

In the basic SDVR algorithm, the updating equation for the
parameter  can also be expressed in Newton’s form:

. (4)
In Eq. (4), the validation error

 (5)
is a function of weight vector , hence it is an implicit
function of .  and  are the
gradient and Hessian of the validation error with respect to
the regularization parameter .
          
In order to update the parameter , we assume that the
weight vector  is updated first, using a fixed .
After  is computed, then  is updated. In the fol-
lowing derivation, we will refer to updating  as the
inside loop training, and will refer to calculating  as
the outside loop updating.

2.1.1 Incremental Gradient
As we see in Eq. (4), the mathematical implementation  of
the SDVR algorithm requires the gradient 
and the Hessian  . Since validation error is not
an explicit function of , we can use chain rule:

 . (6)

The first partial derivative term on the right side of Eq. (6)
can be calculated from Eq. (2). Recall that  was com-
puted before  was updated. From this view,  is not a
function of . Therefore, differentiating Eq. (2) with
respect to  becomes

. (7)

To find the derivative matrix , we use one of
properties of the inverse matrix:

. (8)
Since the derivative of the identity matrix  with respect
to  is zero, we have

. (9)

In Eq. (9),  can be easily obtained from Eq.
(3). After some algebraic manipulations, we get

. (10)

Note that  is a linear function of ,

. (11)

Substituting Eq. (10) and Eq. (11) into Eq. (7), 

. (12)

The term in the bracket above is the new updated weight
vector  from Eq. (2). Therefore, we can rewrite Eq.
(12) as:

. (13)

Now let’s go back to Eq. (6), 

, (14)

where  is the Jacobian matrix of the validation
data. The final expression of the incremental gradient now
can be obtained by substituting Eq. (13) and Eq. (14) into
Eq. (6):

 . (15)

Comparing Eq. (15) with Larsen’s gradient expression in
[3], we can see that Larsen’s expression is a special case of
Eq. (15) when the weight vector converges, at which time

. However, our approach and Larsen’s
approach are based on different assumptions. In [3], the
converged weight vector  is a function of fixed , the
derivative  is derived using the convergent condi-
tion of the inside training loop, i.e.,  and

. While in our approach, the regulariza-
tion parameter is updated in each training epoch. Only the
weight vector , rather than , is a function of .
The derivative  is computed from the weight
updating equation directly. Treating  and  as indepen-
dent variables is important in implementing the SDVR
algorithm. As we will see next, this assumption also makes
calculating the incremental Hessian convenient.

2.1.2 Incremental Hessian Approximation
The SDVR algorithm is characterized by the incremental
Hessian , which can be computed by differen-
tiating  Eq. (15) with respect to .

(16)

Since  is a scalar, it is
equal to its transpose. Using the rule for differentiation of a
product, we can rewrite Eq. (16) as

. (17)
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The first partial derivative of the product within the bracket
on the right side of Eq. (17) can be expanded as

. (18)

Substituting Eq. (10) and Eq. (13) into Eq. (18), we get

. (19)

Note that in  Eq. (17),  is not a explicit
function of . Its derivative with respect to  can also be
calculated using the chain rule:

. (20)

In Eq. (20), only  is unknown,
which is the Hessian matrix of the validation data. As with
the Hessian matrix of the training data, we use the Gauss-
Newton method to obtain the approximate expression

. (21)

Then, Eq. (20) becomes

(22)

The incremental Hessian can be obtained by putting Eq.
(19) and Eq. (22) into Eq. (17):

(23)

Now we have completed the derivation of both the gradient
and the Hessian in Eq. (4) for the incremental updating of
the SDVR algorithm. It appears to involve significant com-
putation. However, since  and  are available
from the inside loop training,  and the validation gradient
vector  and Hessian approximation

 can be calculated simply by passing the
validation data through the same conventional subroutine
as used in computing the gradient and Hessian matrix for
the training data, the additional computation overhead in
the SDVR algorithm is limited.

One more comment should be made on Eq. (23). Recall
that in the inside loop training, the Hessian approximation
given in Eq. (3) can be made positive definite with the Lev-
enberg-Marquardt implementation, which guarantees that
the weight increment is always in a descent direction. How-
ever, in Eq. (23), the second sequential product term has a
quadratic form, but the first sequential product term is non-
quadratic, which can be either positive or negative. In order
to keep the increment of the regularization parameter in  a
descent direction, we will force the incremental Hessian to
be equal to the quadratic term  when the value obtained

from Eq. (23) is negative. In this case, we get a larger Hes-
sian, which corresponds to a reduced learning rate and will
not cause any problem during the training.

In addition, a tunable positive parameter  can be added
to Eq. (23) to make the incremental Hessian invertible in
any case and can be used to adjust the effective learning
rate. This is similar to the use of  in Eq. (3) with the
Levenberg-Marquardt implementation. A small  corre-
sponds to a second derivative dominated approach, while a
large  indicates a transition to the gradient descent
method. Another usage of   is to force  to be positive if
the decrement of the regularization parameter suggested by
Eq. (4) is too large. Adding  into Eq. (23), we have

(24)

with .

2.1.3 Method of Application
In this paper, we will use a two-stage training method to
apply the SDVR algorithm. In the first stage, our purpose is
to determine an optimal regularization parameter. In the
second stage, we will use a fixed  and perform the final
training on a large data set consisting of the previous train-
ing and validation data. Since  is optimal, we will limit
the complexity of the neural network so that it has less risk
of overfitting.

Here are the general steps required for optimization of the
regularization parameter with the incremental SDVR algo-
rithm: 1. Divide the available data set into training and val-
idation subsets using a proper splitting ratio and   initialize
the network weights  and ; 2. Take one step of the
optimization on the training data set by calculating 
with Eq. (2); 3. Evaluate the generalization performance on
the validation data set. If the stop criterion is not satisfied,
update the regularization parameter by using Eq. (4) to get

; 4. Reset  and  when the stop
criterion is not met, then go back to step 2. Otherwise, ter-
minate the first stage training; 5. Put the training data set
and the validation data set together for the final training,
using the latest updated regularization parameter.

For a demonstration of how the SDVR algorithm improves
neural network model generalization, consider the para-
bolic function defined by the following equation:
                 
where the input variable  and  both range from 0 to 2.
The true function surface is displayed in Figure 1. We use
211 data points for training and 130 data points for valida-
tion. The function targets are corrupted with normally dis-
tributed noise of zero mean and 0.04 variance, and a 2-10-
10-1 feedforward neural network model with hyperbolic
tangent activations on the hidden layers and linear activa-
tions on the output layer is applied to learn the parabolic
function. Note that this complicated network (151 network
parameters in total) will overfit the noisy training data if the
unregularized performance function is used with the Lev-
enberg-Marquardt algorithm. This is demonstrated in Fig-
ure 2, where we show two cross-sections of the fitted
function, at    and .
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Figure 1  Parabolic Surface

Figure 2  Training Results without Regularization

Figure 3  Training Results with SDVR Algorithm

In comparison, results obtained using the SDVR algorithm 
are displayed in Figure 3. We can see that no overfitting oc-
curs because the appropriate regularization is determined 
during the adaptive training. Figure 4 shows how the param-
eter  changes with incremental updating. It starts from 
0.01 and takes about 200 epochs to reach convergence. In 
this example, the parameter  is initially set to 0.05, and is 
multiplied by 1.05 each time the validation error increases. 
The convergence of the regularization parameter is indirect-
ly measured by the relative change of the validation error 

(RCVE) . Here we use a 
15-epoch sliding window to monitor the RCVE. The first 
stage training is terminated if the value of the RCVE be-
tween any two adjacent epochs within the window is less 
than 0.00005.

Figure 4  Regularization with Incremental Updating

2.2 Convergent Updating
The convergent updating can be considered as the opposite
extreme from the incremental updating, with respect to the
updating interval for . While the incremental updating
recalculates the regularization parameter in each training
epoch, the convergent updating keeps  training with fixed

 until the optimization algorithm converges. After that, a
new  will be estimated by using the same equation that
we used in the incremental updating. In this approach, we
consider the convergent updating as the special case of
incremental updating initialized independently with the
previous parameters. This procedure will repeat several
times during the first stage training. The tunable parameter

 is set small at the beginning, but will be multiplied by a
relatively large constant if the validation error increases at
each switching point of . The first stage training is usu-
ally terminated when the value of the RCVE between two
adjacent updatings is smaller than a predetermined thresh-
old. Since we train the network to the convergence for each
fixed , the final choice of the optimal regularization
parameter will be the one with smallest validation error
among all updatings.

Figure 5  Regularization with Convergent Updating
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Figure 5 shows the trajectory of  using convergent updat-
ing on our previous problem. This algorithm needs only a
few iterations in the outside loop, but requires more train-
ing epochs in the inside loop. Starting from  , the
training takes several hundred epochs to reach convergence
for the first few updatings of the regularization parameter.
As the parameter  approaches to the optimal value, the
required number of training epochs with fixed  becomes
smaller, since each retraining starts from the previous
weight vector. In this example, the stable state of the inside
loop training is controlled by a 30-epoch sliding window
with 0.00005 RCVE threshold. The other specific settings
include 0.05 for initial , and 10 for increment constant of

.

2.3 Conditional Updating
The conditional updating is proposed as a compromise
between the incremental updating and the convergent
updating. In this implementation, we optimize the training
performance with a fixed parameter  by iteratively updat-
ing the weight vector using Eq. (2) until the validation error
increases, or the value of RCVE within a sliding window is
small enough. After that, a new  is recalculated with Eq.
(4), and the training is performed on the new objective
function. Working in this way, the conditional updating
does not need as many iterations as the incremental updat-
ing required in the outside loop. On the other hand, since
the conditional updating uses a less expensive stop control
in the inside loop, it does not require as many training
epochs as the convergent updating needed with fixed .  

Figure 6 illustrates the switchings  of    during the first
stage training with conditional updating. Beginning at

 ,  the regularization is adapted quickly due to the
increase of the validation error. Thus, the further unneces-
sary training with the initial  is avoided because it will
lead to overfitting. During the transition of  from the less
optimal to the optimal, the validation error may increase
after a number of training epochs, or its trajectory may be
descending but very flat. In the latter case, we can monitor
the RCVE by using a shorter sliding window, 10-epochs
long for example, to control the switching point of . In
this example, the initial  is the same as that used in the
other two cases, but the increment constant of  is 2. The
stop criterion in the outside loop for the conditional updat-
ing is  similar to that for the incremental updating, but uses
a shorter sliding window.

Figure 6  Regularization with Conditional Updating

3. Experiments
In this section, we test the SDVR algorithm under different
initial conditions and different data sizes using the same
training example of the noise-corrupted parabolic function
with the same 2-10-10-1 network structure that we used in
the previous section. Thirty trials with normally distributed
initial weights of zero mean, 0.01 variance are analyzed
under each test condition. The model output is calculated
using the resulting weights from the final  training with all
data included. We use a large testing data set, 2601 samples
from a 51 by 51 grid over the input plane, to measure the
model performance. The performance index is the mean-
squared error (mse) between the model outputs and the true
function outputs. The results are averaged over the 30 tri-
als. In addition, we use the number of float point operations
(flops) to measure the computation load on the first stage
training. We also take a measure of the variation in result-
ing regularization parameter to see if it is consistent under
different test conditions.

The effect of the initial regularization parameter on the
training results with the three implementations are summa-
rized from Table 1 to Table 3. The item marked by the
overline is the mean value averaged over 30 trials, and the
prefix ‘std’ is the notation for the standard derivation of the
item after the underscore. In this test, we use 211 patterns
for the training set and 130 patterns for the validation set.

       Table 1  SDVR Results with Incremental Updating

       Table 2  SDVR Results with Convergent Updating

We can see that within each table, the model performances
are consistent no matter what initial  the training starts
from. The among-table variations in performance mean and

 mean are also insignificant indicating that we can  get
similar results by using any of three SDVR implementa-
tions. However, the computation load for the convergent
updating is sensitive to the value of initial . For the given
noise data, the computational cost is high if the training
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begins at a very small regularization parameter.
  

         Table 3  SDVR Results with Conditional Updating

Table 4 summarizes how training results change with each
implementation as the problem complexity varies. A rea-
sonable index for the problem complexity is the size of the
Jacobian matrix, which is the product of the number of
training patterns and the number of network parameters.
Since the network structure is fixed in this section, we
choose three different data sizes to represent the different
problem complexities. The data splitting ratio (validation
data / training data) is 220/221 for the first data set, 480/
481 for the second, and 1300/1301 for the third. The initial
regularization parameter is set to 0.01. In Table 4, INC rep-
resents incremental updating, CVG refers to convergent
updating and CDT is for conditional updating. 

   Table 4  Comparison of Variations of SDVR Algorithm 

It  can be concluded from the table that the three SDVR
implementations work equally well with respect to the
model performance. However, the computation costs are
quite different among them. The incremental updating is as
efficient as the conditional updating for the first two data
sets, but the conditional updating is more cost-effective for
the third data set. The convergent updating is much slower
than the other two methods for the moderate data size, but
for the large data size, its computation cost is close to the
incremental updating. Therefore, as a guide to the user, we
suggest using either the incremental updating or the condi-
tional updating if the size of the Jacobian matrix is not too
large, and using the conditional updating method other-
wise. If the computation load is not a big concern, then the
convergent updating is always a useful method. The other
factors, like data splitting ratio and noise level, may affect

the comparison results, but they were not considered in this
paper.

4. Conclusions
This paper presented a new framework for adaptation of the
regularization parameter. We have introduced the basic
SDVR algorithm and two variations.  Tests on numerical
examples demonstrate that the three SDVR implementa-
tions work equally well in providing good generalization
under different initial conditions. The tests also indicate
how to choose the best approach to reduce the computation
load according to the problem complexity.
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 Method  No. Data        mse       flops       alpha
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CDT 961

INC 2601

CVG 2601

CDT 2601

α0 α0 α0

2.71 10
3–× 2.63 10

3–× 2.68 10
3–×

3.18 10
4–× 2.02 10

4–× 3.13 10
4–×

1.38 10
10× 9.47 10

9× 1.07 10
10×

3.75 10
9× 4.65 10

9× 4.25 10
9×

2.68 10
1–× 2.73 10

1–× 2.65 10
1–×

3.14 10
2–× 3.58 10

2–× 4.33 10
2–×

2.86 10
3–× 1.28 10

10× 1.20 10
1–×

2.49 10
3–× 3.03 10

10× 1.27 10
1–×

2.79 10
3–× 1.60 10

10× 1.20 10
1–×

1.82 10
3–× 1.49 10

10× 6.43 10
1–×

1.89 10
3–× 4.50 10

10× 6.53 10
1–×

1.83 10
3–× 1.49 10

10× 6.79 10
1–×

9.97 10
4–× 5.32 10

10× 2.50 10
1–×

1.03 10
3–× 6.87 10

10× 2.61 10
1–×

1.04 10
3–× 2.65 10

10× 2.71 10
1–×


