Consider a random process having periodic sample functions as shown, in which t_0 is a random variable that is uniformly distributed between 0 and T. Both A and T are constants.

- Classify this process according to the four pairs of descriptors.
- **b.** Write a probability density function, p(x), for this process.
- c. Calculate the mean value, \bar{x} , as an ensemble average.
- d. Calculate the variance, σ^2 , as an ensemble average.
- e. Repeat parts c and d using time averages.

Sample functions from two statistically independent, stationary random processes $\{x(t)\}$ and $\{y(t)\}$, are used to form two new random processes having sample functions of the form

$$z(t) = x(t) - y(t)$$

 $w(t) = x(t) + y(t)$

Find the following correlation functions in terms of the autocorrelation functions of $\{x(t)\}$ and $\{y(t)\}$:

	$R_{z}(\tau)$	С.	R _{ar} (7)
Ь.	$R_{r}(\tau)$		R_,(T)

... A stationary random process has an autocorrelation function of the form

$$R_{\star}(\tau) = 25 e^{-|\tau|} + 100$$

- a. What is the mean-square value of the process?
- **b.** What is the mean value of the process?
- c. What is the variance of the process?

Find the mean and autocorrelation function of $X(t) = A \cos(\omega t + \phi)$.

- (a) When ω and ϕ are fixed and A is a random variable uniformly distributed between 1 and 3.
- (b) When ω is fixed and A and ϕ are independent random variables, A normally distributed with a mean 0 and variance σ^2 and ϕ is uniformly distributed between $-\pi$ and π .
- (c) A and ϕ are fixed and ω has a density

$$f_{\omega}(\lambda) = e^{-\lambda}, \quad \lambda > 0,$$

= 0, $\lambda < 0.$